${ }^{1}$ The University of Tokyo ${ }^{2}$ DBAI, TU Wien ${ }^{3}$ CES, University of Paris 1 (Panthéon-Sorbonne)

Abstract

In practice, items are not always allocated once and for all, but often repeatedly. For example, when the items are recurring chores to distribute in a household. Motivated by this, we initiate the study of the repeated fair division of indivisible items.

Applications

- Fairly distributing household chores between a couple
- Allocating teaching duties to professors over the semesters
- Granting employees daily access to a common infrastructure

Repetition: Why Bother?

In the one-shot setting, a Proportional (let alone Envy-Free) and Pareto-Optimal allocation may not exist. Our main goal:
"Can we guarantee better fairness and efficiency properties by looking at the repeated allocation of items?"

Main Idea

Suppose that we want to allocate a single item Δ between two agents, \therefore and $\stackrel{\text {. Problem: }}{ }$

Axioms

An axiom can be satisfied overall (while looking globally at the whole bundle, over all time-steps) or per round (if it is satisfied individually by all time-steps).

- Envy-freeness (EF): No agent prefers someone else's bundle
- Envy-freeness up to one item (EF1): If an agent envies some other agent, we can eliminate envy by removing one item from the bundle of one of the two agents
- Proportionality (PR): Each agent receives at least $1 / n$ of their evaluation of the whole set of items
- Pareto-optimality (PO): There is no reallocation that is strictly better for some agents, and worse for none

Results: General Case

Under certain conditions, envy-freeness is always achievable:
If k is a multiple of n, an overall EF allocation always exists.
To achieve this, we can rotate the items at each time-step, e.g.:

	\bullet	\bullet	\vdots
day 1	Δ	\square	\star
day 2	\star	Δ	\square
day 3	\square	\star	Δ

What about efficiency? Even if k is a multiple of n, an overall EF and PO allocation might not exist. Still:

> | If k is a multiple of n, an overall $P R$ and PO allocation always |
| :---: |
| exists. |

Results: Two-agent Case

For two agents, we have stronger fairness guarantees:
For two agents, if k is even, an overall EF and PO allocation always exists.

What about the individual time-steps? We cannot have envy-freeness in every round. However:

For two agents, if k is even, an allocation which is overall EF and EF1 per round always exists.

Can we additionally have efficiency? Not if $k>2$, but:
For two agents, if $k=2$, we can always find an overall EF and PO allocation that is EF1 per round.

For two agents, if k is even, we can always find an overall EF and PO allocation that is weakly EF1 per round.

Results: Variable Number of Rounds

What if the number of rounds is not known in advance? Via a connection to the randomised and divisible settings, we show:

For every utility profile, there is some k for which an overall EF and PO allocation that is PROP[1, 1] per round exists.

