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A B S T R A C T

Social Choice Theory is the study of collective decision making. A well-known lesson
from this field is that there is no perfect way to aggregate the individual views of a
group into a single choice. To mitigate this, and support group deliberation, scholars
recently proposed a formal model for justifying collective decisions. In this framework,
a justification consists of a concrete explanation for why said decision is the “best”
one, according to some normative conditions for collective decision procedures. An
algorithm to automatically compute such justifications was also proposed, grounded
in constraint programming. Unfortunately, this is a computationally hard task, and
the proposed approach only works for decision problems of a very limited size. In
this thesis, we build on this idea and propose an alternative algorithm for the auto-
mated justification of collective decisions, which takes inspiration from popular graph
search algorithms. We prove the correctness of our approach and propose two general
families of heuristics that can be used in combination with our algorithm. Then, we
empirically assess the performance of our method, finding that it is capable of justify-
ing moderately-sized input problems within minutes. These tests are conducted both
on randomly generated inputs and on inputs extracted from real-world data. Finally,
we analyse the justifications retrieved by our algorithm, and use the insights gathered
to propose new directions of research to improve the approach further.
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Usefulness depends on tractability.

— Kenneth J. Arrow (1995)
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1
I N T R O D U C T I O N

This thesis is concerned with the automated justification of collective decisions. Pre-
cisely, our aim is to introduce an algorithm for this task that can be used in practice.
In this chapter, we motivate our goal and discuss some related work. Furthermore, we
define our objectives and the specific research question we address. Lastly, we give an
overview of the structure of the thesis.

1.1 motivation and related work

When faced with the problem of collective decision making, how should we aggregate
the individual preferences of agents into a single group choice? In Social Choice The-
ory, the study of collective decision processes (Arrow, Sen, and Suzumura, 2002), it is
a well-established fact that there is no perfect way to do so.

One possible solution is to apply the axiomatic method. Pioneered by Arrow (1951),
it is one of the main tools employed by Social Choice theorists. In this approach, re-
searchers formalise a set of intuitively appealing normative principles (axioms) and
reason about which kind of collective decision procedures (voting rules) satisfy them.
Broadly, we can distinguish between two kinds of axiomatic results: impossibilities and
characterisations. Impossibility results are theorems stating that no voting rule can sat-
isfy a certain set of axioms. Classic examples of such theorems can be found in the
works of Arrow (1951), Sen (1970), Moulin (1988), and Gibbard (1973) (also indepen-
dently proved by Satterthwaite (1975)). Characterisation results, on the other hand,
define a voting rule (or a class of voting rules) by showing it to be the only one satisfy-
ing a certain set of axioms (see the works of May (1952), Young (1974), Henriet (1985),
Ching (1996), and Sekiguchi (2012)).

Thus, to return to our original question, we could use such characterisations to
support collective decisions. Suppose the voters agree upon a set of axioms. If we can
show that all voting processes that satisfy these axioms elect the same outcome, then
we have constructed a proof in support of this outcome. In other words, if one accepts
the axioms, then one must also accept the outcome.

Albeit interesting, this approach has some drawbacks regarding real-world appli-
cability. Firstly, it is geared towards a limited public, as it requires users to be able to
manipulate formal axioms and construct (or, at least, understand) mathematical proofs.
Secondly, a proof of this kind could be of limited explanatory power: an abstract proof
that speaks about all voting rules, without explaining how the outcome is related to the
normative principles (or referring to the concrete situation the agents are in), might
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1.1 motivation and related work

be unsatisfactory for a non-expert audience. Indeed, there is a difference between a
proof (which merely shows that a fact holds) and a proof that explains (which explains
why a fact holds) (Hanna, 2000). This seems particularly important in the context of
group decisions: if we aim at satisfying all voters, we want them to understand why
the elected outcome is appealing. Thus, it might be better to provide users with a set
of concrete arguments (grounded on the agreed-upon axioms) in favour of the target
outcome. By concrete arguments, we mean arguments that directly refer to the specific
entities involved in the decision problem at hand.

Procaccia (2019) recently expressed similar views. He states that, in real-world ap-
plications, axioms should be used to explain outcomes to voters, rather than assisting
designers in choosing a suitable rule. In the related field of fair division (Thomson,
2016), this view has been successfully applied. Spliddit1 (Goldman and Procaccia,
2015), a website implementing algorithms for various division tasks (e.g., rent divi-
sion), provides users with a detailed explanation, automatically computed, for why
the returned outcome is the only one satisfying certain fairness requisites. In contrast,
Procaccia argues, a similar tool does not exist in the context of voting. The nearest
example is RoboVote,2 but the explanations provided by this system (as Procaccia men-
tions) are much more obscure, and multiple users reached out to the RoboVote team
asking for alternative explanations.

Nevertheless, Social Choice theorists have recently started to address the issue of au-
tomatic explanation of voting outcomes. Cailloux and Endriss (2016) propose a formal
language to construct such concrete arguments (based on a given set of axioms) used
to justify the outcomes of collective decisions. Furthermore, they define an algorithm
to automatically construct these justifications when the outcome is the one selected by
the Borda rule, a well-known voting rule (Zwicker, 2016). In particular, their justifica-
tions consist in step-by-step explanations for why a given outcome should be picked in
a decision problem. Peters et al. (2020) showed that, for the same rule, it is possible to
construct an explanation consisting of O(m2) steps (wherem is the number of the alter-
natives the agents can choose from). Moreover, they give a lower bound (for the length
of such explanations) which applies to a broad class of voting rules. Kirsten and Cail-
loux (2018) present an algorithm, grounded in bounded model checking (Biere, 2009),
to automatically explain why a voting rule violates a given axiom. This can be seen as
a form of automatic argumentation against a voting rule. Finally, Boixel and Endriss
(2020) extended the approach of Cailloux and Endriss by introducing a formal notion
of justification for a voting outcome, along with an algorithm to compute them, which
is based on constraint programming (Rossi, Van Beek, and Walsh, 2006). Interestingly,
their solution works (in principle) for any set of axioms. Their approach addresses the
two drawbacks raised earlier: firstly, the justifications are automatically derived. This

1 http://www.spliddit.org/
2 At the time when this chapter was originally written, RoboVote was accessible at https://www.robovote.
org/ (January 2021). However, by July 2021, it seems like the site is not longer online.
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1.1 motivation and related work

lifts the burden of constructing a proof from the user, who now only has to read and
accept it. Secondly, they consist of concrete arguments (grounded in some normative
principles) which refer to the specific situation the agents find themselves in.

Their work fits into the recent trend of applying tools from Automated Reasoning
to the domain of Computational Social Choice (Brandt et al., 2016), a field that lies at the
intersection of Computer Science and Social Choice Theory. A very prolific strain of
work in this trend concerns automatic theorem proving via SAT-solving, a methodol-
ogy initially pioneered by Tang and Lin (2009). More examples of this approach can be
found in the works of Geist and Endriss (2011), Brandt and Geist (2016), Brandt, Geist,
and Peters (2017), Endriss (2020), and Kluiving et al. (2020). For a broader introduction,
refer to the review by Geist and Peters (2017). For different applications of Automated
Reasoning to Social Choice, see the work of Beckert et al. (2017) (for the automatic veri-
fication of voting rules implementations via bounded model checking) or the works of
Nipkow (2009) and Wiedijk (2009) (for an automatic verification of proofs of Arrow’s
Theorem in higher-order logic). More generally, for other logical formalisations of clas-
sical choice-theoretic results, see the works of Grandi and Endriss (2013) (first-order
logic), Ågotnes, van der Hoek, and Wooldridge (2011), Troquard, van der Hoek, and
Wooldridge (2011), and Ciná and Endriss (2016) (modal logics).

On the other hand, the work of Boixel and Endriss also aligns with a renewed surge
of interest into “Explainable AI” (Guidotti et al., 2018; Arrieta et al., 2020). In partic-
ular, as Boixel and Endriss note, their concept of justification is consistent with the
view on Explainable AI expressed by Langley (2019), where an intelligent system is
said to exhibit justified agency “if it follows society’s norms and explains its activities in
those terms”. Indeed, the algorithm proposed by Boixel and Endriss can explain why,
according to some normative principles, a certain voting outcome is “the right one”. Fi-
nally, let us note that other authors agree on the potential of Automated Reasoning as
a tool to achieve explainability in AI (see, for example, the works of Bonacina (2017)
or Benzmüller and Lomfeld (2020)).

One might wonder whether the approach of Boixel and Endriss is computationally
feasible. Since we have adopted the point of view of real-world applicability so far,
this seems like a legitimate concern. As it turns out, justifying an outcome is a hard
task: the algorithm proposed by Boixel and Endriss can only handle decision prob-
lems of a limited size. More fundamentally, Boixel and de Haan (2021) show that the
problem of automatic justification is computationally intractable in general. For some
version of the problem, checking whether a justification is correct is DP-complete (with
DP = NP ∧ coNP,3 as defined by Papadimitriou and Yannakakis (1982)) while check-
ing whether a justification exists is ΣP2 -complete. For another version of the problem,
checking correctness is in NEXP∧ coNEXP (an exponential-time analogue of DP) and

3 Given two complexity classes A and B, the complexity class A∧B corresponds to {L1 ∩ L2 | L1 ∈ A, L2 ∈
B }. Notice that this is not the same as A∩ B.
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1.2 research question

NEXP-hard, while deciding existence is in EXPNP (an exponential-time analogue of
the class PNP = ∆P2 ) and NEXP-hard.4 Thus, in both cases, the problem is riddled with
negative results.

However, although discouraging, these results do not necessarily mean that this en-
terprise is without hope. Indeed, there are many examples of provably hard problems
that have algorithms that perform well in practice. For instance, deciding whether a
propositional formula is satisfiable is known to be an NP-complete problem. Despite
this, modern SAT solvers routinely handle problem instances involving millions of
clauses (Gomes et al., 2008). This thesis will address this computational issue: despite
the negative complexity-theoretic results, is it possible to build a justification algorithm
that performs well in practice?

1.2 research question

In this thesis, we aim at improving the algorithm proposed by Boixel and Endriss
(2020). The research question can be summarised as:

“Is it possible to design an algorithm for the problem of computing justifications for
collective decisions that achieves good performance in practice?”

Of course, it is hard to define what “good performance in practice” is. In this setting,
we mean that the resulting algorithm should be able to meet the practical needs of
potential real-world users. However, since this is a computationally demanding task,
we will restrict our focus to moderately-sized inputs. That is, the algorithm should be
able to find a justification for voting problems with around ten voters and three to
four candidates within a reasonable time (i.e., minutes). We argue that this is already
enough to cover some interesting and high-stakes use cases. For example, a research
group looking for a PhD candidate to hire, a small committee voting to enact a new
policy, or the strategic unit of a company choosing where to open the next branch.
Furthermore, in such small-scale scenarios, the stakeholders can concretely meet and
discuss the justifications we provide. Thus, the automated justification of collective
decisions seems particularly well-suited for these cases, as voters can integrate this
procedure directly into their deliberation process. Moreover, since we are interested in
explanations that directly refer to the concrete situations the voters are in, one would
expect that, for large-scale scenarios, the computed justifications would be large as
well. Clearly, an overly long explanation might be hard to read and understand. Thus,
even if it could be computed, a justification for a situation involving many voters and
candidates might not be that useful in practice.

4 For more details on Complexity Theory, refer to the book by Arora and Barak (2009).
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1.3 thesis overview

1.3 thesis overview

This thesis is structured as follows:

• In Chapter 2, we present the formal model we use to talk precisely about electoral
problems. In contrast to most of the work in Social Choice Theory (and in partic-
ular, to what Boixel and Endriss (2020) did), we employ an anonymous model.
That is, we focus on elections where the names of the voters do not matter. Fur-
thermore, we introduce the notion of axiom in Social Choice Theory, along with
some useful additional notions. Finally, we present a small selection of axioms
that we will use in our experiments.

• In Chapter 3, we present our main contribution, that is, the algorithm. We start
by recalling the framework introduced by Boixel and Endriss (2020), presenting
the definitions of justification and justification problem. Next, we define the no-
tion of justification algorithm and specify what it means for such an algorithm to
be sound and complete. Roughly, a sound justification algorithm can only return
justifications for the input problem, whereas a complete algorithm finds all the
justifications of the input problem that we consider interesting. If an algorithm is
sound and complete, then it is correct. Then, we define a formal language (based
on propositional logic) in which we can encode all axioms presented in Chap-
ter 2. This is useful, as it enables us to delegate part of the computational task
to state-of-the-art SAT solvers. Then, after briefly recalling the main algorithm
proposed by Boixel and Endriss (2020), we present our approach, inspired by the
Breadth-First Search and Iterative Deepening Search algorithms for graphs (Rus-
sell and Norvig, 2015). Our algorithm is grounded in the notion of instance graph:
intuitively, an instance graph is a structured, graph-theoretic view of the kind
of arguments that our justifications can express. After proving the correctness
of our method, we introduce two (correct) families of heuristics. In this context,
a heuristic is an axiom-specific variation of our algorithm that can be used to
improve its performance.

• In Chapter 4, we directly address the research question. First, we present the im-
plementation of the algorithm we used in our experiments. To do so, we specify
some concrete heuristics, based on the two general families introduced in Chap-
ter 3. These heuristics are tailored for the axioms presented in Chapter 2. That
is, they aim at improving the performance for these particular axioms. However,
we stress that adding new axioms does not require us to retract such heuristics.
Next, we present our experimental setup, where we used the aforementioned im-
plementation to tackle the research question. To do so, we ran our algorithm on
several voting problems to assess its performance. In these tests, we employed
randomly generated inputs, as well as inputs extracted from real-world data. We

12



1.3 thesis overview

obtained this data from Preflib,5 an online library of preference datasets (Mattei
and Walsh, 2013). We then analyse our findings, noting that most inputs can be
justified within a reasonable time (especially in the case of real-world data), and
briefly relate them with the results of Boixel and Endriss (2020). All in all, we
consider our results a positive answer to the research question.

• In Chapter 5, we take a closer look at the justifications that we can compute
with our method (in combination with the axioms presented in Chapter 2). More
precisely, we present the most common patterns of explanation or argumentative
structures that we obtained in the justifications we have seen during our exper-
iments. We then present a partial categorisation for these justifications. Finally,
we reflect on the notions of explanation and explanatoriness and, based on these
reflections, present some ideas on how to improve the performance of our ap-
proach further.

• In Chapter 6, we summarise our findings and propose some directions for future
work.

5 https://www.preflib.org/

13
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2
B A C K G R O U N D

In this chapter, we introduce the model used throughout the rest of this work to
speak precisely about collective decisions. Furthermore, we give a short introduction
to the axiomatic approach in Social Choice Theory, along with a selection of some well-
known axioms. This is relevant to the rest of the work, as the notion of justification we
use is based on the notion of axiom.

2.1 model

Let us start with an informal overview of the problem. In a group decision, a group
of agents (or voters) need to collectively choose between a set of alternatives. Generally,
each voter might have its own specific preference about the alternatives, and, to make
the group choice, we ought to aggregate the preferences into one single choice. We call
the mechanisms to aggregate the preferences voting rules.

We will model anonymous voting rules, that is, rules that only consider the number of
voters who express a certain preference. Thus, in contrast to the standard (and more
general) model employed in Social Choice Theory (see, for example, the introduction
by Zwicker (2016)), our model will not capture the identities of the individual voters.
Although less general, our model allows for a much more compact representation of
the problem, and we consider this to be an acceptable restriction. Indeed, it seems
reasonable to assume that in most real-world group decisions the identities of the
voters are not taken into account. We will briefly compare our approach with the non-
anonymous model at the end of this section.

Let us now introduce the model.

2.1.1 Voters, Alternatives and Preferences

A voting scenario is a pair 〈n?, X 〉 where n? is a positive natural number denoting the
number of voters and X is a finite (and non-empty) set of alternatives. We represent
a voter’s preference as a strict linear order over the alternatives, that is, a complete,
transitive and irreflexive binary relation. We denote the set of all such orders over X
as L(X). For a given preference � ∈ L(X), we write a � b if (a, b) ∈ �, meaning that
a is (strictly) preferred to b.

14



2.1 model

2.1.2 Anonymous Profiles

We can think of an election as a collection of preferences. We call such a collection a
profile and, in line with our anonymous approach, we represent profiles as multisets,
which is a kind of set that allows for repetitions. Similar modellings of anonymous
profiles can be found, for example, in the works of Gehrlein and Fishburn (1976),
Merlin (2003) and Peters et al. (2020).

Formally, we can represent a multiset as a function M : M → N where M is called
the underlying set of M. Given an x ∈ M, we call M(x) the multiplicity of x. Further,
we call |M| the cardinality of M, defined as |M| =

∑
x∈MM(x) (i.e., the sum of the

multiplicities of all its objects). With a slight abuse of notation, we write x ∈ M if
x ∈ M and M(x) > 0. Intuitively, this means that x occurs at least once in M. Finally,
given two multisets M and N with the same underlying set M, we define the sum of
M and N as the multiset M+N :M→N such that (M+N)(x) = M(x) +N(x).

We can then think of a profile Rn for n voters as a multiset with underlying set
L(X) such that |Rn| = n. In other words, a profile counts, for every possible preference
� ∈ L(X), the number of voters with preference �. Furthermore, a profile for n voters
must count n preferences in total. Following our multiset notation, given a preference
�, we write R(�) for the number of voters who express the preference �.

Example 2.1. Consider the set of alternatives X = {a, b, c }. A profile with 3 voters
could be:

#1 : a � b � c
#2 : c � a � b

This expresses the fact that one voter has preference a � b � c and two voters
each have preference c � a � b. A further example (this time with 2 voters) is profile
{a � c � b, b � c � a }. This expresses the fact that one voter has preference a � c � b
and one voter has preference b � c � a. 4

2.1.3 Voting Rules

Let R(X)n be the set of all profiles over X for n voters. For a given voting scenario
〈n?, X 〉, the set of all profiles up to n? voters is R(X)+ =

⋃n?

k=1R(X)
k. We can model a

voting rule as a social choice function (SCF). An SCF for a scenario 〈n?, X 〉 is a function
of the form:

F : R(X)+ → 2X \ {∅ }

In other words, an SCF assigns a set of winning alternatives to each profile (of up to
n? voters). Notice that we are here focusing on the case of single-winner voting: an SCF
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2.1 model

should ideally return a unique choice, and multiple winners should be interpreted as
ties. The problem of multiwinner voting (for example, when voting for a committee)
is studied as a separate challenge in Social Choice Theory (Faliszewski et al., 2017).

Some well-known voting rules include:

• The Plurality rule, where the alternative that is ranked first most frequently is
elected. More precisely, Plurality is defined as:

Plurality(R) = arg max
x∈X

{∑
�∈R

R(�) · 1[top(�) = x]

}

Here, 1 is the indicator function1 and top(�) returns the alternative that is
ranked at the top in �.

• The Borda rule, where each alternative x is assigned a score from every voter,
corresponding to the number of alternatives that the voter ranks below x. The
alternative(s) with the highest total score win. More precisely, it is defined as:

Borda(R) = arg max
x∈X

{∑
�∈R

R(�) · b(�, x)

}

Here, b(�, x) is the Borda score of x in �:

b(�, x) = |{y ∈ X \ { x } | x � y }|

• A prominent family of voting rules is the class of Condorcet extensions, the set
of rules satisfying the Condorcet Principle. An SCF satisfies this principle if, when-
ever a Condorcet winner exists, it is elected. A Condorcet winner is an alternative
x? ∈ X such that, for all alternatives y ∈ X \ { x? }, a strict majority of voters pre-
fer x? to y. Young’s rule, for example, is a Condorcet extension: this rule elects
in R the alternative x? which minimises the number of preferences you have to
remove from R for x? to become a Condorcet winner in R.

Notice that there are profiles with no such winners. For instance, in the following
profile, no alternative is preferred by a strict majority over the other two:

#1 : a � b � c
#1 : b � c � a
#1 : c � a � b

1 The indicator function is defined as 1[ϕ] = 1 if ϕ is true, otherwise 1[ϕ] = 0.
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For example, here, in a majority contest a wins against b but loses against c.
Furthermore, interestingly, in voting scenarios with at least three alternatives
and three voters, neither Plurality nor the Borda rule are Condorcet extensions.
For example, in the following profile c is the Condorcet winner, but Borda elects
{a, c }:

#1 : a � b � c
#2 : c � a � b

Similarly, in the next profile b is the Condorcet winner, but Plurality elects
{a, b, c }:

#1 : a � b � c
#1 : b � a � c
#1 : c � b � a

As an aside, notice that in this profile Borda elects {b } as well.

Coincidentally, from the above discussion, we can notice that on the same profile
different voting rules might elect different outcomes. We will discuss the significance
of this in Section 2.2.

2.1.4 Comparison with a Non-Anonymous Model

In their work, Boixel and Endriss (2020) consider the more general model of non-
anonymous SCFs. Let us briefly sketch this model. In this framework, we have a set of
named voters, N?, and a set of alternatives, X. A profile for a set N ⊆ N? of voters is an
element of L(X)|N|, that is, a vector of preferences (one for each specific voter).

This approach is more general, but this comes at the cost of a much larger space of
possible profiles. Given that our goal is to implement an efficient algorithm, a more
compact representation might be preferable in this setting. To make things more con-
crete, let us show some actual numbers. Given a voting scenario 〈n?, X 〉 with n?

voters and alternatives in X (where |X| = m), how many possible profiles are there in
the anonymous model? To count the total number of profiles, recall that a profile for
n voters is a multiset of cardinality n and underlying set L(X). The number of multi-
sets of cardinality n with an underlying set of cardinality k is

(
n+k−1
n

)
(Stanley, 1997).

Thus, given that |L(X)| = m!, we can count the number of profiles for n voters as:

|R(X)n| =

(
n+m! − 1

n

)
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2.2 axioms and axiom instances

With this, we can compute the total number of profiles for our voting scenario:

|R(X)+| =

n?∑
k=1

(
k+m! − 1

k

)
Table 2.1 compares, for some voting scenarios, the size of this set to the number

of profiles under the non-anonymous model employed by Boixel and Endriss (2020).
Under their framework, for a voting scenario of n? voters and m alternatives, we have∑n?

k=1

(
n?

k

)
m!k profiles.

2 alternatives 3 alternatives 4 alternatives 5 alternatives

2 voters
anon 5 27 324 7380

non-anon 8 48 624 1.46 · 104

3 voters
anon 9 83 2924 3.03 · 105

non-anon 26 342 1.56 · 104 1.77 · 106

4 voters
anon 14 209 2.05 · 104 9.38 · 106

non-anon 80 2400 3.91 · 105 2.14 · 108

5 voters
anon 20 461 1.19 · 105 2.35 · 108

non-anon 242 1.68 · 104 9.77 · 106 2.59 · 1010

Table 2.1: A comparison, for some small voting scenarios, of the number of possible profiles
under our anonymous model (anon) and the non-anonymous model employed by
Boixel and Endriss (2020) (non-anon).

2.2 axioms and axiom instances

In this section, we introduce the notion of axiom in Social Choice Theory, along with
some additional notions and terminology we will use throughout the rest of this work.
We will also present a selection of some well-known axioms.

2.2.1 The Axiomatic Approach in Social Choice Theory

In the previous section, we have seen some examples of voting rules which, on a given
profile, might elect different outcomes. This, however, poses a problem: how should
we choose the right voting rule? What does “right” even mean in this context?

Some SCFs seem “obviously” unappealing, such as the function that always elects
all alternatives. However, when comparing some intuitively reasonable rules, such
as Plurality and Borda, how do we decide which one to use in our elections? One
approach could be the following. We could decide on some properties that we regard
as essential for a voting rule, and try to pick a mechanism that satisfies these properties.
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2.2 axioms and axiom instances

This idea is at the core of the axiomatic approach (Endriss, 2011; Zwicker, 2016). This
approach, pioneered by Arrow (1951), is one of the fundamental techniques within the
field of Social Choice Theory.

In this context, an axiom is, generally speaking, an intuitively appealing normative
requirement for a voting rule, specified in a precise mathematical way. An SCF may
or may not satisfy an axiom, and axioms can be used to argue for or against a partic-
ular rule. Examples of such axioms are Neutrality (stating that all candidates must be
treated equally), Monotonicity (stating that if a winning candidate receives increased
support, then it must still be a winner) and the aforementioned Condorcet Principle. We
have already seen how an SCF might violate an axiom. For instance, Plurality and the
Borda rule both violate the Condorcet Principle. One could interpret this fact as an
argument against these two rules.

More radically, an important fact to notice is that not all axioms are mutually com-
patible. Indeed, some combinations of normative principles are impossible to satisfy.
We call a result stating that such a combination is impossible an impossibility theorem.
There are plenty of impossibilities in the literature. Most notably, Arrow’s Theorem
(Arrow, 1951), one of the most important results (if not the most important result) of
Social Choice Theory. In his work, Arrow proposed five reasonable and seemingly in-
nocuous axioms and then proved that no voting rule can possibly satisfy all of these
conditions at the same time.

However, not all axiomatic results are negative results. A more encouraging kind of
result is a characterisation theorem, which defines a particular SCF (or a class of SCFs)
by showing it to be the only one satisfying a certain set of axioms. For example, the
Borda rule has been characterised in a seminal paper by Young (1974). This can be
interpreted as an argument in favour of this rule: if all voters accept the axioms that
characterise this SCF, then they must also accept to use it in their group decision.

So far, we discussed informally what it means for an SCF F to satisfy an axiom. To
clarify this notion, one can define a formal language, with precise syntax and seman-
tics. We will introduce a concrete language based on basic propositional logic in the
next chapter. For now, irrespectively of the language chosen, we can define the interpre-
tation of an axiom A as the set of SCFs that satisfy A. Similarly to Boixel and Endriss
(2020), we denote this set as I(A), and the following holds:

I(A) ⊆ R(X)+ → 2X \ {∅ }

Here, F ∈ I(A) if and only if F satisfies A. Further, for a given set of axioms A, we
define the interpretation of A as:

I(A) =
⋂
A∈A

I(A)
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In other words, an SCF F is in I(A) if and only if F satisfies all axioms in A. Note
that, given a set of axioms A, an impossibility result would state that I(A) = ∅ (i.e.,
no SCF satisfies A). Conversely, a characterisation result regarding an SCF F and a set
of axioms A would state that I(A) = { F } (i.e., F is the only rule that satisfies A).

2.2.2 Existential and Universal Axioms

A large number of axioms have been proposed in the literature. One informal categori-
sation, slightly adapted from the work of Fishburn (1973), is the distinction between
existential and universal axioms. This is only a partial categorisation; nonetheless, it will
be useful for our presentation. Hence, let us now briefly review it.

Both existential and universal axioms restrict the behaviour of an SCF F, albeit dif-
ferently. An existential axiom is an axiom that existentially quantifies over the profiles.
For example, Non-Imposition is satisfied by F if, for every x ∈ X, there exists a profile R

such that F(R) = { x }. Notice that we used also a universal quantifier (“for every x”),
but still, what matters is that we quantified existentially over the profiles. Furthermore,
note that we did not impose for existential axioms to only quantify existentially over
the profiles. That is, an existential axiom might quantify profiles both universally and
existentially.2

On the other hand, a universal axiom quantifies only universally over the profiles.
They usually have the following form: For all profiles R1 . . .Rk, if R1 . . .Rk satisfy some
condition, then some constraint should hold over F(R1) . . . F(Rk). Moreover, Fishburn calls
the universal axioms that restrict one profile at a time (e.g., k = 1 in our example)
intraprofile axioms. Further, he calls universal axioms that restrict multiple profiles
interprofile axioms. For example, the Condorcet Principle is an intraprofile axiom, as
it prescribes the following: “for every profile R with a Condorcet winner (condition),
R must have the Condorcet winner as the sole winner (constraint)”. Conversely, as we
will see in more detail later, Neutrality is an interprofile axiom. This condition states
the following: “for every pair of profiles R1 and R2, if the two profiles are equal up
to a renaming of the alternatives (condition), then the outcomes of these two profiles
should be equal up to the same renaming (constraint)”. Intuitively, this expresses that
the names of the alternatives should not matter.3

2 Perhaps, then, a better name for existential axioms might have been non-universal axioms. However, we
stick to this terminology to highlight the fact that existential axioms do contain an existential quantifier
over the profiles. As we will see, that is what matters here.

3 Note that this categorisation does not cover axioms that do not quantify over profiles. Although techni-
cally possible, these axioms do not seem to be particularly interesting. Therefore, we leave them out of
our discussion.
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2.2 axioms and axiom instances

2.2.3 A Selection of Axioms

In the following, we recall some well-known axioms of Social Choice Theory, adapted
to our model of anonymous SCFs. Later, these axioms will be used in our experiments.

First, let us introduce some additional notation. Given a profile R, recall that R(�)
is the number of voters that express the preference �. With a slight abuse of notation,
given a profile R and two alternatives x and y, we define as R(x � y) the number of
voters who prefer x over y in R:

R(x � y) =
∑

�∈L(X):
x�y

R(�)

We will now present a collection of axioms for an SCF F defined over a scenario
〈n?, X 〉. Note that all of these axioms, except for Positive Responsiveness, were al-
ready employed in the experiments of Boixel and Endriss (2020).

• Neutrality. This axiom requires that all alternatives should be treated equally,
that is, the names of the alternatives should not matter. Given a pair of profiles
R and R′, if there is a permutation π : X → X such that R = π(R′), then F(R) =
π(F(R′)) must hold as well.4

• Pareto Principle. For two alternatives x, y ∈ X, if all voters prefer x to y, then
y cannot win: if, for some x, y ∈ X, it holds that |R| = R(x � y), then y 6∈ F(R).

• Faithfulness. If there is only one voter, then their top-ranked choice should win:
if |R| = 1 and � ∈ R, then F(R) = { top(�) }.

• Cancellation. If all alternatives tie in a pairwise majority contest, then all al-
ternatives should win: if, for all alternatives x and y, it holds that R(x � y) =

R(y � x), then F(R) = X.

• Reinforcement. If two profiles R1 and R2 have some winners in common, then
if we combine the two profiles in a single profile R, these alternatives should win
in R (also known as “Consistency”): if F(R1) ∩ F(R2) 6= ∅ and |R1 + R2| 6 n?,
then F(R1 +R2) = F(R1)∩ F(R2).5

• Condorcet Principle. If there is an alternative x? such that, for all alternatives
y ∈ X\ { x? }, a majority of voters prefer x? to y, then x? should be the sole winner:
if for all y ∈ X \ { x? } it holds that R(x? � y) > |R|/2, then F(R) = { x? }.

4 Given a permutation π : X → X and a profile R, we denote as π(R) the profile obtained by substituting
every alternative x mentioned in R with π(x). Similarly, given a set of alternatives X′ ⊆ X, we indicate by
π(X′) the set {π(x) | x ∈ X′ }.

5 The restriction |R1 +R2| 6 n
? ensures that we only speak about profiles relevant to the current scenario,

〈n?, X 〉. This will be discussed later on.
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2.2 axioms and axiom instances

• Positive Responsiveness. This axiom requires that if we increase the support of
a winner, then this alternative should become the sole winner. If a profile R+ can
be obtained from a profile R by raising the support of an R-winner x?, then x?

must be the sole winner in R+: if, for two distinct profiles R and R+ it holds that
R(y � z) = R+(y � z) for all y, z ∈ X \ { x? }, and that R(x? � y) 6 R+(x? � y)
for all y ∈ X \ { x? }, then x? ∈ F(R) implies F(R+) = { x? }.

Notice that all of these axioms fit the informal category of universal axioms. That
is, they all have the following form: “for all profiles that satisfy a certain condition, a
certain constraint must hold over their outcomes”. The choice of focusing on this kind
of axioms for our experiments will be discussed later (Section 3.4.5). For now, we stress
that, despite this choice, the approach that we are going to propose works for any kind
of axiom.

Moreover, notice that, as already discussed by Boixel and Endriss (2020), our version
of Reinforcement is weaker than the one commonly adopted in the Social Choice
literature, as introduced by Young (1974). Indeed, the classical formulation of Rein-
forcement refers to any possible electorate of any size, whereas we restrict attention
to profiles in the voting scenario (that is, with at most n? voters). The rationale behind
this choice is two-fold. First, recall that we aim at proposing an algorithm for the auto-
matic justification of voting outcomes. In particular, we want to find a justification for
why a certain outcome should win in a given profile (the “goal profile”). As we will
see, these justifications are composed of arguments based on a certain set of axioms.
Thus, a justification based on the classical formulation of Reinforcement might deal
with profiles that are bigger than the goal profile. Such a justification, as argued by
Boixel and Endriss, might be of limited explanatory power. Indeed, it would require
agents to reason about what would happen if more voters would join, and this might
be puzzling to some: after all, why should they care about what would happen in
that case? Secondly, having an axiom that involves an unbounded number of profiles
would be a challenge from the computational point of view. This will be made clear
later, when the details of the algorithm will be described; for now, consider that (in
our approach) to search for a justification one has to explore the space of all profiles. If
this space is infinite, then, when no justification exists, the search could (in principle)
go on forever.

2.2.4 Axiom Instances

Above, we have introduced axioms as conditions that an SCF might or might not
satisfy, and thus as something we can use to argue about voting rules. More concretely,
axioms can also be used to argue for or against a particular outcome, which is the goal
of this work. In principle, an argument in favour of a certain outcome X? ⊆ X in a
profile R?, based on some axioms A, could be the following: “every SCF F that satisfies
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axioms A elects X? in R?; therefore, if you accept A, then you must accept that X? wins
in R?”.

Although valid, this argument is of limited explanatory power, as it does not explain
“why”, according to the principles expressed by A, the set X? is the “right” outcome.
Rather, it is an abstract argument about SCFs in general. To understand what a more
concrete argument could look like, consider the following example, based on Neu-
trality.

Example 2.2. Let R be the following profile:

#1 : a � b � c
#1 : b � c � a
#1 : c � a � b

Notice that this profile is, in some sense, symmetric: each alternative is ranked first,
second and third exactly once. Thus, the three alternatives differ only in name, since
they cannot be distinguished from the structure of the profile alone.6 By Neutrality,
then, we must have that the three alternatives tie, since we cannot make any distinction
based on their names.

More formally, consider the permutation π : X → X such that π(a) = b, π(b) = c

and π(c) = a. Notice that R = π(R). Therefore, by Neutrality, it must hold that
F(R) = π(F(R)). But the only non-empty outcome X? ⊆ X where X? = π(X?) holds is
X itself. Thus, we must have that F(R) = {a, b, c }.7 4

Notably, instead of referring to the full axiom of Neutrality, we only referred to
one particular instance of it. That is, we instantiated the quantified variables to some
specific objects (relevant to the current problem).

The justifications we will automatically construct will consist of concrete and specific
arguments, similar to the one exemplified above. Thus, the notion of axiom instance
is at the core of our approach. For now, we gave an intuitive example of what an
instance is; later on, as we will introduce a language to speak about axioms, we will
make this notion precise. Regardless, following the notation employed by Boixel and
Endriss (2020), given an axiom A, we write A′ /A if A′ is an instance of A. Similarly,
for a set A′, we write A′ /A if every A′ ∈ A′ is an instance of A. Furthermore, given a
set of axioms A, we write A′ /A if A′ is an instance of some A ∈ A. Finally, we write
A′ /A if every A′ ∈ A′ is an instance of some A ∈ A.

6 To see why, imagine that you have to refer to one of these alternatives without mentioning its name. How
would you distinguish it from the other two? Notice that, for example, you cannot refer to a as “the
alternative ranked first in the first ballot”. This is because we are dealing with anonymous profiles: since
multisets have no order, there is no “first ballot”.

7 Notice that, if we were to work with non-anonymous profiles, Neutrality would not be sufficient for
this. Without going into the details, in that case, we could use the names of the voters to distinguish the
alternatives (e.g., “the alternative ranked first in the ballot of that voter”). To argue for this outcome, we
would also need the axiom of Anonymity, which states that the names of voters should not matter.
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3
A G R A P H - B A S E D J U S T I F I C AT I O N A L G O R I T H M

In this chapter, we are going to present the main contribution of this work, namely, a
graph-based algorithm for the automatic justification of group decisions. Firstly, we are
going to recall the framework introduced by Boixel and Endriss (2020) to talk about
justifications in Social Choice problems. Secondly, we are going to present a way to
encode axioms, and then present the base algorithm introduced by the aforementioned
authors. Thirdly, we are going to introduce our algorithm and prove its correctness.
Lastly, we discuss two general families of heuristics for our approach.

3.1 automatic justification of collective decisions

In this section, we recall the background notions concerning justifications and justifi-
cation problems. We also introduce justification algorithms.

3.1.1 Justifications and Justification Problems

In the following, we use the notion of justification and justification problem as introduced
by Boixel and Endriss (2020). We will first give an intuitive account of what we mean
by justification, and then introduce the formal definitions.

Intuitively, when we talk about a “justification” for some decision, we mean some
kind of argument that explains why such decision is, as the name goes, just (that
is, “good”). Generally speaking, such explanations may rest upon some normative
principles that express in some way what a “good decision” should look like. Let us
give a concrete example. Suppose Edward is driving a car and, suddenly, a dog jumps
out of a fence, running in the middle of the road. Of course, Edward loves animals,
and thus at the last moment steers violently, hitting and destroying an innocent shop
window. A justification for this decision could be: “I had to crash into the window
in order to save the dog”. This justification relies upon the implicit assumption (a
normative principle) that it is better to destroy a window rather than hurting an animal.
Furthermore, it explains why Edward’s decision was a consequence of this principle
(assuming, for simplicity, that hurting the dog or crashing the window were the only
two options). If the shop owner wanted to give a counterargument, then she would
need to attack the norm Edward’s decision rested upon.

Boixel and Endriss (2020) applied this idea of a justification (an explanation based
on a set of normative principles) to the problem of collective decision making. More
precisely, they formalise what constitutes a justification, grounded in a certain set of
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axioms, for why a particular outcome should win an election. Let us review their
definition.

Definition 3.1 (Justification Problems and Justifications; Boixel and Endriss, 2020). For
a given voting scenario 〈n?, X 〉, let R? be a profile, X? be a non-empty subset of X and A a set
of axioms for SCFs of this scenario. We call such a triple 〈R?, X?, A〉 a justification problem.
Further, a justification for 〈R?, X?, A〉 is a pair of sets of axioms 〈AN, AE〉 (with normative
basis AN and explanation AE) such that:

(i) Explanatoriness. AE satisfies this if it minimally explains the outcome X? in R?, that
is, (1) for any F ∈ I(AE) it holds that F(R?) = X? and (2) for any A ⊂ AE there is an
F ∈ I(A) such that F(R?) 6= X?. In other words, all SCFs that satisfy AE elect X? in R?,
and for no subset of AE this holds.

(ii) Relevance. The explanation is an instance of the normative basis: AE /AN.

(iii) Adequacy. The normative basis should be composed of axioms in the corpus: AN ⊆A.

(iv) Non-triviality. There should be at least one SCF that satisfies the normative basis:
I(AN) 6= ∅. If this holds, we say that AN is non-trivial.

Thus, intuitively, a justification for 〈R?, X?, A〉 is a justification (grounded in A) in
favour of outcome X? (the target outcome) for profile R? (the goal profile). Furthermore,
we call a justification 〈AN, AE〉 minimal if for all proper subsets A ⊂ AN of the norma-
tive basis it does not hold that AE /A. Intuitively, this means that all axioms in AN are
“used” in AE.

To return to our previous discussion of justifications, AN contains the normative
principles (axioms) which our justification appeals to, whereas AE constitutes a con-
crete argument1 showing that a certain outcome is the only one that satisfies AN (that
is, if you accept AN, then you must accept that X? wins in R?). Although we have yet
to introduce the formal definitions of axioms and instances, let us give an intuitive
example.

Example 3.1. Consider the voting scenario 〈n?, X 〉, where n? = 3 and X = {a, b, c }.
Let the goal profile R? be:

#2 : a � b � c
#1 : c � b � a

Furthermore, let the target outcome X? be {a }. We can construct a justification
〈AN, AE〉 for X? in R? as follows:

1 Technically, AE is an (unstructured) set of smaller arguments that collectively explain F(R?) = X?. How-
ever, to give a readable explanation, these need to be put together in some structured way. In this work,
we focus on the problem of finding the explanations, and we leave the separate issue of presenting them
to future work.
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• AN contains three axioms: Reinforcement, Cancellation and Faithfulness.

• AE is consists of the following instances:

– (Cancellation) In profile R1 = {a � b � c, c � b � a } (a subprofile of R?)
all alternatives tie in a pairwise comparison, thus F(R1) = {a, b, c } (we call
such a profile a Cancellation profile).

– (Faithfulness) Profile R2 = {a � b � c } (another subprofile of R?) has a
single voter, thus F(R2) = {a }.

– (Reinforcement) Profile R? is equal to R1 +R2, thus if F(R1)∩ F(R2) 6= ∅,
then F(R?) = F(R1)∩ F(R2).

Clearly, AE /AN, that is, every element of AE is an instance of some axiom in AN.
Moreover, notice that the three instances together imply that F(R?) = {a }, and that if
we were to remove any one of the three, this would no longer hold. Thus, 〈AN, AE〉 is
a justification for X? in R?. 4

Another thing to consider is the following. As Boixel and Endriss (2020) observe
(Theorem 1 of their paper), we cannot justify two different outcomes for a given profile
using the same normative basis. An immediate consequence of this (that we will use
later on in our experiments) is the following:

Corollary 3.1. Let A be a set of axioms and R? a profile defined over a set of alternatives X.
If A is non-trivial, then we cannot justify two different outcomes X1 ⊆ X and X2 ⊆ X for R?

using axioms from A.

Proof. Suppose there are two (distinct) sets of alternatives X1 and X2, subsets of X, such
that 〈R?, X1, A〉 and 〈R?, X2, A〉 have justifications 〈AN1 , AE1 〉 and 〈AN2 , AE2 〉, respec-
tively. Moreover, suppose that A is a non-trivial set of axioms. Then, clearly 〈A, AE1 〉
and 〈A, AE2 〉 are also justifications for the same justification problems, as justifications
need not be minimal. But this contradicts Theorem 1 by Boixel and Endriss (2020), as
we justified two different outcomes for R? using the same normative basis. Thus, we
cannot justify more than one outcome using a non-trivial corpus of axioms.

3.1.2 Justification Algorithms

We now introduce justification algorithms, along with their core properties. We assume
that the general notion of “algorithm” is known.

Definition 3.2 (Justification Algorithms). A justification algorithm is an algorithm that
takes a justification problem as input and returns a (possibly empty) collection of pairs of sets
of axioms as output. Furthermore, the following properties are properties that a justification
algorithm might satisfy:
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• Soundness: For any input J, if the algorithm outputs the pair 〈AN, AE〉, then it is a
justification for J.

• Completeness: For any input problem J and for all sets of axioms AN, if a justification
for J that uses AN as a normative basis exists, then on input J the algorithm returns at
least one justification with normative basis A (for some A ⊆ AN).

• Correctness: A justification algorithm is correct if it is both sound and complete.

Let us comment on our notion of completeness. Intuitively, this condition states that,
for every possible normative basis, we need to return at least one justification that only
uses axioms from this basis. An alternative (and stronger) definition of completeness
could be the following: an algorithm is complete if it returns every possible justification
for the input J. We argue that this definition is not required for practical purposes,
as our definition is already strong enough to satisfy the users. In fact, the normative
basis is where two electorates could disagree on, based on which axioms they decide to
accept. If we guarantee that we can find a justification for every (subset of a) normative
basis that admits one, then we know that we can provide every electorate that could be
satisfied by a certain outcome and a certain normative basis with at least a justification
that they like. The fact that we find only one explanation per normative basis (or rather,
we are guaranteed to find at least one) is non-critical in this regard. Indeed, the role
of an explanation is only to explain why the outcome is the only one satisfying the
normative basis. Moreover, two explanations grounded in the same normative basis
will generally be quite similar, as they appeal to the same normative principles.2

The fact that we only require to find a subset of any possible normative basis is
not problematic either. Indeed, if one would accept the normative basis AN, then one
would accept every normative basis A ⊆ AN, as it requires subscribing to the same or
fewer axioms as AN. Notice that, by allowing this, we can design an algorithm that
returns only minimal justifications. For if 〈AN, AE〉 is a justification for some justifica-
tion problem J, then there is a minimal justification 〈A, AE〉 for J with A ⊆ AN. For
instance, we can remove axioms from AN one-by-one, and stop as soon as the result-
ing normative basis A leads to a minimal justification. Thus, returning 〈A, AE〉 would
be enough to satisfy our definition of completeness (with respect to AN).

3.2 a language for axioms

As it will be made clear later, in both our approach and the approach proposed by
Boixel and Endriss (2020), part of the computational task is delegated to some external
state-of-the-art reasoning tools. Thus, we need to encode axioms and axiom instances

2 Although this needs not to be true in general, we found this to be true for almost all of the experiments
we ran.
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in such a way that the reasoner can understand.3 Consequently, the choice of the
encoding language has a direct impact on the performance of the algorithm, as it
constrains the choice of which tools we can use. Since we are interested in building a
practical algorithm, this is crucial.

In their experiments, Boixel and Endriss (2020) employ Constraint Satisfaction Prob-
lems (CSPs) (Rossi, Van Beek, and Walsh, 2006) as a formalism. Instead, we will use
propositional logic. Propositional logic has been used with success in various appli-
cations of Automated Reasoning to Computational Social Choice (see the review by
Geist and Peters (2017)). Moreover, there is an active and lively research community
devoted to the development and improvement of high-performing propositional rea-
soning tools (see, for example, the “SAT Competition”).4 Encoding axioms in this lan-
guage allows us to employ these SAT solvers out of the box. Finally, encoding choice-
theoretic axioms in propositional logic is relatively straightforward, especially given
the various examples of such encodings to be found in the literature (as mentioned
above). Thus, we choose this formalism for our experiments.

3.2.1 The Propositional Language

In this section, we present the background notions used to define our language. Fix any
indexing of the profiles R(X)+ = {R1, . . . , R` } and of the alternatives X = { x1, . . . , xm }.
Our language is made of propositional variables pij, where i ranges over all profiles
and j over all alternatives. Intuitively, pij indicates that in Ri alternative xj wins.

We adopt the standard machinery of propositional logic: literals, connectives, as-
signments, conjunctive normal form (CNF), and so on (see the chapter by Lifschitz,
Morgenstern, and Plaisted (2008) for an overview of these concepts). We mostly con-
sider formulae in CNF, usually referred to with the variable ϕ. With a slight abuse
of notation, we occasionally treat CNF formulae like sets: a CNF formula is a set of
clauses, and a clause is a set of literals.

Fix a voting scenario 〈n?, X 〉. Let V be the set of all relevant propositional variables
(that is, all pij such that Ri ∈ R(X)+ and xj ∈ X). For every SCF F over 〈n?, X 〉, there
is a corresponding assignment αF over V such that:

For every pij ∈ V, αF(pij) = 1 if and only if xj ∈ F(Ri).

Through this notion, we can define precisely the interpretation of a formula ϕ as a set
I(ϕ) of SCFs such that F ∈ I(ϕ) if and only if αF |= ϕ. That is, for a given formula ϕ,

3 Recall that (the explanation of) a justification is composed of axiom instances. In brief, to search for a
justification for 〈R?, X?, A〉, we need first to generate the instances of the axioms in A, and then use said
reasoning tools to find the explanations among the generated instances.

4 http://www.satcompetition.org/
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its interpretation is the set of SCFs whose corresponding assignments make ϕ true.5

This definition is useful, as we will encode axioms through propositional formulae;
thus, it translates directly to a precise notion of axiom interpretation. In other words,
if we encode an axiom A through a CNF formula ϕ, we will use the interpretation of
ϕ to define the interpretation of A.

Usually, one real-world constraint can only be represented as a complex (that is,
multi-clause) CNF formula, rather than with one single clause. This is true for the
instances of most axioms we will use in our work. Recall that the notion of instance is at
the core of the definition of justification we employ. Consequently, it seems reasonable
to treat the clauses that arise from the same instance as a single object that can be
manipulated. To this end, we introduce the notion of a group CNF (gCNF). A formula
in gCNF is a finite set of CNF formulae.6 Intuitively, this object corresponds to a CNF
formula where the clauses that arise from the same constraint (in our case, the same
instance) are grouped together. We will see in the next section how this can be used
to encode axioms; now, we discuss some more background notions regarding gCNF
formulae.

We will usually refer to a gCNF formula with the variable Φ. Given a gCNF formula
Φ, we define the CNF formula ϕΦ given by the concatenation of all formulae in Φ as:7

ϕΦ =
⋃
ϕ∈Φ

ϕ

A gCNF formula Φ is satisfiable (respectively, unsatisfiable) if ϕΦ is (respectively,
is not) satisfiable. Likewise, the interpretation of a gCNF formula Φ is defined as
I(Φ) = I(ϕΦ).

The last notion that we need is the notion of group minimal unsatisfiable set. Let us
first recall the standard notion of minimal unsatisfiable set (MUS) in propositional logic.
Intuitively, we can think of a MUS as an “unsatisfiable nucleus” of ϕ. Formally, a MUS
of a CNF formula ϕ is a formula ϕ′ ⊆ ϕ such that ϕ′ is unsatisfiable and none of its
proper subsets are.

Likewise, a group minimal unsatisfiable set (gMUS) of a formula in gCNF Φ is a
gCNF formula Φ′ ⊆ Φ such that Φ′ is unsatisfiable and none of its proper subsets are.
So, instead of removing clauses one-by-one, we remove all clauses of a given formula
at the same time. This notion is useful, as it has a direct connection to the notion of

5 Note that not all assignments have a corresponding SCF. For instance, the assignment α0 such that for
every p it holds that α0(p) = 0 corresponds to no SCF. This is because such an SCF would violate the
requirement that at least an alternative wins in all profiles. We will show how to deal with this problem
later on.

6 The requirement of this to be finite will be discussed later.
7 Notice that we use the set-theoretic view of CNF formulae for this definition. This is not problematic,

as this concatenation is used only to define the semantics (that it, satisfiability and interpretation) of a
gCNF formula. Having some redundant clauses has no impact on this.
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explanation we use. This will be made clear later (Theorem 3.2), but first, we will show
how to encode axioms in our language.

3.2.2 Encoding Axioms and Instances

We will encode axioms as formulae in gCNF. Further, we will encode axiom instances
as singleton gCNF formulae, that is, gCNF formulae containing a single CNF formula.8

Given an axiom (gCNF formula) A, we say that A′ is an instance of A (written A′ /A)
if A′ ⊆ A and |A′| = 1. Thus, every CNF formula ϕ ∈ A corresponds to some instance
A′ (namely, A′ = {ϕ }), and an axiom can be seen as a “collection” of its instances.

Notice that this definition complies with the three requirements laid down by Boixel
and Endriss (2020):

(i) Every instance A′ of an axiom A must itself be an axiom. Axioms are formulae in
gCNF, and instances are (singleton) gCNF formulae; thus, every instance is an
axiom.

(ii) The interpretation of an axiom is always equal to the intersection of the interpretations of
all its instances. This requirement is also met; recall that an axiom A is encoded as
a gCNF. Given our definition of the interpretation of a gCNF, an SCF F satisfies
A if and only if it satisfies all the CNF formulae ϕ ∈ A. But since there is an
instance A′ = {ϕ } for every such ϕ, we have that F satisfies A if and only if F
satisfies all instances A′ /A.

(iii) The number of instances of any given axiom A is finite. This follows naturally from
the fact that a formula in gCNF is finite.9

Furthermore, given a set of axioms A, we will indicate by ΦA the gCNF formula
obtained by “unrolling” all axioms into a single set (this notation will be used when
presenting the algorithm):

ΦA = {ϕ | ϕ ∈ A, for some A ∈ A }

Let us show how to encode axioms within this language. As a starting example,
consider the following. In our approach, we must explicitly encode the requirement
that at least one winner must be elected for every profile (that is, for every R we must

8 A more natural view could be to define axioms as formulae in gCNF and instances as formulae in
CNF. However, we stick to the current definition to comply with the requirements for axiom instances
stipulated by Boixel and Endriss (2020), as discussed later.

9 Notice that the restriction on the finiteness of gCNF formulae is not problematic in our setting, as we are
interested in axioms that restrict only the profiles of some specific voting scenario 〈n?, X 〉 (which are,
indeed, finite). Our language is powerful enough to encode all axioms in Section 2.2.3, that are of this
kind; still, one could imagine an axiom that restricts an infinite number of profiles (such as the classical
formulation of Reinforcement by Young (1974)).
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have that F(R) 6= ∅). This is to make sure that we only consider assignments that
have a corresponding SCF when testing for the satisfiability of a gCNF. We can indeed
represent this as a separate axiom, that we call AtLeastOne, and encode it as a gCNF.
An instance of it, regarding a profile Ri, can be encoded as the singleton gCNF formula
LEAST(Ri):

LEAST(Ri) =

 ∨
xj∈X

pij


This states that at least one alternative must win in Ri. The full axiom can then be

encoded as the gCNF formula LEAST, composed of one instance per profile in the
scenario:

LEAST =
⋃

R∈R(X)+

LEAST(R)

This axiom is always encoded in our corpus and is always assumed to be part of the
corpora we use for our experiments.

More generally, our language is expressive enough to encode all the axioms shown
in Section 2.2.3. We will now present two examples.

Example 3.2. Recall the axiom of Faithfulness: if a profile contains only one vote,
then the top-preference of that vote should be the unique winner. Let Ri be a pro-
file with |Ri| = 1. Further, with a slight abuse of notation, let top(Ri) = xj be the
top alternative of the unique preference order contained in Ri. We can encode the
corresponding instance of Faithfulness as the singleton gCNF formula FAI(Ri, xj):

FAI(Ri, xj) =


 ∧
xk∈X\{xj }

¬pik

∧ pij


This states that no alternative should win in Ri save for xj. We can encode the full

axiom as the gCNF formula FAI combining the above formula for each single-vote
profile:

FAI =
⋃

R∈R(X)1

FAI(R, top(R)) 4

Example 3.3. Consider the axiom of Positive Responsiveness: if we increase the sup-
port of a (possibly tied) winner x?, then x? must become the sole winner. Let Ri and
Rj be two profiles, where Rj has been obtained from Ri by raising alternative xk in at
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least one voter’s ranking. We can encode the corresponding instance with the singleton
gCNF formula POS(Ri, Rj, xk):

POS(Ri, Rj, xk) =


 ∧
x`∈X\{xk }

(¬pik ∨¬pj`)

∧ (¬pik ∨ pjk)


This states that, for any alternative x` 6= xk, if xk wins in Ri then x` cannot win in

Rj (recall that ¬p∨ q is equivalent to p =⇒ q). Further, if xk wins in Ri, then it must
also win in Rj. Again, we can encode the full axiom as the gCNF formula POS:

POS =
⋃

(R,R′,x?)∈P

POS(R, R′, x?)

Here, P ⊆ R(X)n
? ×R(X)n

? ×X is a set such that (R, R′, x?) ∈ P if and only if R′ can
be obtained from R by raising the support of x? in at least one preference order. 4

3.3 full gmus-based algorithm

In this section, we recall the base algorithm given by Boixel and Endriss (2020) to au-
tomatically compute justifications, expressed with the machinery of our propositional
language. We will build our algorithm upon this approach.

Intuitively, the algorithm works as follows. Let J = 〈R?, X?, A〉 be the input problem.
First, we encode all axioms in A as a single gCNF formula (generation step), plus a
formula that encodes the fact that X? must not be the outcome for R? (called the goal
formula). We call this whole gCNF formulaΦJ. Then, we use an external reasoning tool
to extract the gMUSes of ΦJ (solving step). As we will show, the gMUSes containing
the goal formula correspond to the explanations of J. Intuitively, this holds because
such a gMUS is a minimal set of axiom instances that enforces F(R?) = X?. Indeed, if
we were to remove the goal formula, such a set of instances would become satisfiable
(by virtue of it being a gMUS): this means that the target outcome is the only possible
outcome in R?. Similarly, if we were to remove any other axiom instance, we would
again obtain a satisfiable gCNF, and we could find an SCF Fwhich satisfies this smaller
formula that has F(R?) 6= X? (as the goal formula requires this).10

10 For simplicity, we omitted the problem of non-triviality from this presentation. It will be addressed in
the sequel.
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3.3.1 Encoding Justification Problems

We can encode a justification problem J = 〈R?, X?, A〉 in a gCNF formula ΦJ as
follows. Let the goal formula be:

ϕGoal =

 ∨
xj∈X?

¬pgj

∨

 ∨
xj∈X\X?

pgj


Here, g indicates the index of the goal profile, R?. This formula expresses the fact

that F(R?) 6= X? must hold. Then:

ΦJ = ΦA ∪ {ϕGoal }

This gCNF formula corresponds to all instances of all axioms in the corpus A, plus
the goal formula. Notice that an SCF F is in I(ΦJ) if and only if it satisfies all axioms
in A, while at the same time electing an outcome different from X? in R?.

3.3.2 gMUS Algorithm

We will now make the connection between a gMUS of ΦJ and a justification for J

precise. Intuitively, we will show that a gMUS of ΦJ corresponds to a justification
for a justification problem J. As such, this theorem guarantees the correctness of the
algorithm introduced later in this section. It is a variant of Theorem 2 as proved by
Boixel and Endriss (2020), but expressed with the machinery of gCNFs and gMUSes.

Theorem 3.2 (Correctness of the gMUS Algorithm; Boixel and Endriss, 2020). Let J =

〈R?, X?, A〉 be a justification problem. Then a pair of sets of axioms 〈AN, AE〉 is a justification
for J if and only if the following conditions are satisfied:

(i) ΦAE ∪ {ϕGoal } is a gMUS of ΦJ;

(ii) AN ⊆A and AE /AN;

(iii) ΦAN is satisfiable.

Proof. The proof of this theorem mirrors the proof of Theorem 2 by Boixel and Endriss
(2020). Indeed, the notions of gMUS for a gCNF formula and MUS for a CSP as used by
the authors are essentially the same. Furthermore, the encoding we used in this setting
is virtually equivalent to the encoding used in the original paper (a CNF formula in
our encoding corresponds to a constraint in the CSP network).

The practical importance of this theorem is that it guarantees correctness of the fol-
lowing justification algorithm, that we call Justify. Given a problem J = 〈R?, X?, A〉,
the execution of Justify(J) evolves as follows:
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1. Generate ΦJ. While doing so, keep track of which axiom A ∈ A and which
instance A′ gave rise to each formula ϕA′ ∈ ΦJ;

2. Check whether ΦJ is satisfiable. If it is, stop and announce that justifying X?

is impossible.11 If it is not,12 repeat the steps below until no new gMUS can be
computed:

(2a) Compute a new gMUS Φ? of ΦJ such that ϕGoal ∈ Φ?. Define AE as the
set of instances corresponding to Φ? \ {ϕGoal };

(2b) For every AN such that AN / AE and for no A ⊂ AN the same holds,13

if ΦAN is satisfiable,14 return the justification 〈AN, AE〉 (and continue the
execution).

This is essentially the algorithm proposed by Boixel and Endriss (2020). This al-
gorithm is sound, as we only return a pair of sets of axioms that satisfy the three
conditions of Theorem 3.2. Further, provided that our reasoning tool enumerates all
the gMUSes, it is complete. Indeed, for any justification 〈AN, AE〉, we will surely re-
turn a justification with explanation AE (as by looking at the gMUSes of ΦJ we find
all explanations) and normative basis A ⊆ AN (as we return all minimal justifications
that have AE as the explanation). Therefore, this algorithm is correct.

Notice that, at Step 1, we refer to the generation of ΦJ. This step (generation step)
is the true bottleneck of the algorithm, computationally speaking. Indeed, since we
delegate the reasoning tasks (that is, the checks for satisfiability and the gMUSes ex-
traction) to state-of-the-art SAT solvers, Step 2 (solving step) can usually be handled
relatively quickly (compared to the first step).

To address this, we are now going to propose our main contribution: an algorithm
based on a different generative approach, able to interleave the generation and solving
phases in a principled way. In general, this algorithm can find a justification by looking
only at a portion of the full gCNF formula ΦJ, while still being guaranteed to find all
possible justifications.

11 As this means that there is an SCF satisfying all axioms that elects some outcome different than X? in R?.
12 Conversely, this means that either A is trivial (no SCF satisfies A) or that some non-trivial subset of

axioms A ⊆A enforces that all F ∈ I(A) must have F(R?) = X?. Notice that both might be true.
13 With the second condition, we guarantee that we only return minimal justifications. Further, note that, as

already noticed by Boixel and Endriss (2020), if for every instance A′ / A there is only one axiom A ∈A

such that A′ /A, then for every explanation AE we can only have one possible (minimal) normative basis
AN such that AE /AN. Finally, note that since there are only 2|A| − 1 total normative bases (the number
of non-empty subsets of A), with small corpora this search does not significantly impact the performance
of this algorithm.

14 This check is necessary to guarantee non-triviality for AN.

34



3.4 graph-based approach

3.4 graph-based approach

In this section, we introduce our main contribution, a graph-based algorithm for the
automatic justification of collective decisions. As said above, we mainly address the
generation step of the algorithm. The main idea behind our algorithm is the follow-
ing. Instead of generating the whole set of instances directly, we procedurally generate
them, starting from the instances that mention profiles that are in some sense the “clos-
est” to the goal profile. This notion of closeness will be made precise as we introduce
instance graphs, but intuitively a profile is close to the goal profile if it is mentioned
in an instance that also mentions the goal profile or some profile close to it.15 The
main advantage is that, if a justification is found only by using instances that mention
the profiles close to the goal profile, then we can avoid generating the whole set of
instances.

3.4.1 Instance Graphs

An instance graph is an undirected multi-hypergraph of profiles and instances. The
multi part means that there can be multiple edges between nodes (as there could be
multiple instances connecting the same profiles), whereas the hyper part means that an
edge is not restricted to connect only two nodes (as some axioms mention more than
two profiles). This sounds rather clumsy, but it is just a fancy way to describe a set of
overlapping sets and inherit the notions of path, connectedness and such.

Before going further, let us define some additional notation. Recall that an axiom
instance is a singleton gCNF formula (a set containing a single CNF formula). We say
that P(A′) is the set of profiles mentioned in an instance A′, i.e., R ∈ P(A′) if and only
if there is some clause in ϕ (with A′ = {ϕ }) that contains a literal referring to R.

We will now introduce the notion of instance graphs. Intuitively, this object corre-
sponds to a structured view on a set of instances A′. Indeed, note that, in the following
definition, an instance graph is fully determined by the instances it is composed of.

Definition 3.3 (Instance Graphs). An instance graph is a pair G = 〈P, A′〉, where:

• A′ is a set of axiom instances (or edges). We say that an instance A′ ∈ A′ connects any
two profiles in P(A′).

• P is a finite set of profiles (or nodes). We require that P =
⋃
A′∈A′ P(A′). That is, the

set of nodes is the set of all profiles that are mentioned in at least one instance.

Note that we can see an instance as an edge between the profiles it mentions. Further,
we refer to elements of A′ both as instances and as edges, depending on the context.
To clarify this definition, consider the following example.

15 Formally, this notion of closeness is not well-founded, but it is intended here as a mere intuition.
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Example 3.4. Let R1 be the following profile:

#2 : a � b � c

Moreover, let R2 be:

#1 : a � b � c
#1 : b � a � c

Notice that we can obtain R1 by raising the support of a in R2. Therefore, there is
an instance of Positive Responsiveness (let it be A12) connecting R1 and R2.

Now, consider the two profiles R3 = {a � b � c } and R4 = {b � a � c }. Note that
R2 = R3 + R4. Hence, there is an instance of Reinforcement that mentions R2, R3
and R4. Let this instance be A234.

Finally, consider the instance graph G = 〈P, A′〉, where P = {R1, R2, R3, R4 } and
A′ = {A12, A234 }. This instance graph can be represented as follows:

R1 R2

R3
R4

A12

A234

Here, note that the instance of Reinforcement connects three different profiles. 4

We say that GA = 〈P, A′〉 is the corresponding instance graph of A if A′ is the set of
all instances of A (that is, A′ = {A′ | A′ / A }). Again, notice that all the information
is already contained within A; indeed, the instance-graph GA is just a structured view
on the instances, to simplify the presentation of the upcoming generation algorithm.
Let us now review some basic graph-theoretic notions.

A path is a sequence of edges (A1 . . . Ak) such that for every i ∈ { 1, . . . , k− 1 }, it
holds that P(Ai)∩P(Ai+1) 6= ∅. We say that such a path is of length k.

We say that two nodes R and R′ are connected if there is path between them, that is,
if there is a path (A1 . . . Ak) such that R ∈ P(A1) and R′ ∈ P(Ak). We call an instance
graph connected if all of its nodes are. Finally, the distance between two connected
(distinct) nodes R and R′ is defined as the length of the shortest path connecting the
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two. The distance between a node and itself is 0, whereas the distance between two
unconnected nodes is undefined.

Given two instance graphs G1 = 〈P1, A1〉 and G2 = 〈P2, A2〉, we say that G1 is a
subgraph of G2 (written G1 v G2) if and only if:

• The nodes of G1 are a subset of the nodes of G2: P1 ⊆ P2.

• The edges of G1 are a subset of the edges of G2: A1 ⊆ A2.

Note that the constraint for P1 to be composed of the profiles mentioned in A1 must
still hold. Thus, we cannot remove an edge A′ without removing the profiles it men-
tions (if these profiles are mentioned only by A′), or have other similarly problematic
situations. Further, notice that, for a set of axioms A and a set of instances A′ such that
A′ /A, it trivially holds that GA′ v GA. This is because GA is defined by the instances
of A, and the set of instances of A′ (which is A′ itself) is a subset of those instances.
This fact will be used in the proof of the upcoming lemma.

3.4.2 Instance Graphs and Justifications

We are now going to show that, for all justifications 〈AN, AE〉 of a given justification
problem 〈R?, X?, A〉, the explanation AE corresponds to a connected instance graph
that contains the goal profile. This means that, during the generation step, we only
have to generate the instances mentioning the profiles connected to the goal profile.
This has several computational advantages:

• If A is such that in the graph GA the profiles connected to R? are only a portion
of the full set of profiles R(X)+, this generation method (compared to the “full
approach”) will always generate a portion of the full set of instances.

• In an intuitive sense, the depth of an explanation (defined as the maximum dis-
tance from the goal profile to some profile employed in the explanation) is re-
lated to how complex the resulting explanation is to read. That is, a very deep
explanation may require reasoning about a very “distant” profile, and perform
multiple reasoning steps far away from the goal profile. Therefore, in real-world
applications, where the goal is to explain the decision to a non-expert public, we
might want to limit the depth of the explanations. This view of explanations as
instance graphs gives us a concrete way to perform this restriction.

• Finally, this notion of depth gives us a principled way to interleave generation
and solving. For example, we could first search for justifications with a maximum
depth of 0; if we do not find anything, we increase the maximum depth to 1, and
so on. We can stop this process when we exhaust the computing resources, or
when we generate the full graph. Alternatively, if our users are happy with just
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one justification, we can stop as soon as we find one. An advantage of this is that,
if a justification can be found within depth d, then we do not need to generate
anything from depth d+ 1 on.

So then, let us prove that all explanations correspond to an instance graph that is
connected and contains the goal profile.

Notice that the following lemma does not say that all connected graphs containing the
goal profile are explanations. In other words, we are not reducing the explanatoriness
condition of a set of instances to a set of graph-theoretic structural properties. We
are just showing the opposite direction: we are showing that, if the explanatoriness
condition is met for a set of instances AE, then some structural conditions hold for the
corresponding graph. This is useful as, in some sense, it tells us where to look for an
explanation, and will be used to prove the correctness of our main algorithm.

Lemma 3.3. Let 〈AN, AE〉 be a justification for some justification problem 〈R?, X?, A〉. Fur-
ther, let GAE = 〈PE, AE〉 be the instance graph corresponding to AE. Then, the following
conditions must hold:

(i) The graph GAE is a subgraph of the full graph corresponding to the corpus: GAE v GA.

(ii) The graph GAE contains the goal profile: R? ∈ PE.

(iii) GAE is connected.

Proof. We will show that, given a justification 〈AN, AE〉 of a justification problem
〈R?, X?, A〉, the graph GAE = 〈PE, AE〉 satisfies Conditions (i), (ii) and (iii).

(i) By relevance and adequacy of 〈AN, AE〉, we have that AE /A. Thus, as discussed
above, GAE v GA.

(ii) Suppose that R? 6∈ PE. Then, the goal profile is never mentioned in AE, which
means that no constraint is placed over it. Consequently, adding the constraint
that any F must have F(R?) 6= X? cannot make AE unsatisfiable. But this means
that there is a F ∈ I(AE) such that F(R?) 6= X?. This contradicts the definition of
justification; therefore, R? ∈ PE.

(iii) Suppose that GAE is not connected. Then, it is possible to partition GAE into a
set of subgraphs { G1, . . . , Gk } such that each of these subgraphs is connected.
Let G? be the subgraph containing R? (which must surely exist, by virtue of the
previous condition). Let A? ⊂ AE be the set of axiom instances corresponding
to G?. Since A? is a proper subset of AE, by explanatoriness, A? is not strong
enough to enforce that X? wins in R?. Furthermore, since none of the other
connected subgraphs of GAE mention R?, adding their corresponding instances
to A? cannot possibly change this. But this implies that AE does not enforce that
X? wins in R?, which contradicts explanatoriness. Thus, GAE must be connected.
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This concludes the proof.

Let G = 〈P, A′〉 be an instance graph. For any justification 〈AN, AE〉, we write
〈AN, AE〉 ∼ G (read as “〈AN, AE〉 is taken from G”) if AE ⊆ A′. In other words, this
means that AE is, in some sense, “contained” in G.

For a given justification problem J = 〈R?, X?, A〉, let GJ be the maximal connected
subgraph of GA containing R?. Maximal, here, means that no connected subgraph of
GA containing R? is a supergraph of GJ. More precisely, GJ = 〈PJ, AJ〉, where:

• PJ is the set of all profiles that are connected to R? in GA.

• AJ is the set of all instances of A that mention some profile in PJ, that is, AJ =

{A′ / A | P(A′) ⊆ PJ }.

Thus, an immediate consequence of the above lemma is the following.

Corollary 3.4. Let J = 〈R?, X?, A〉 be a justification problem. Then, every 〈AN, AE〉 for J

is taken from GJ.

Proof. By Lemma 3.3, we have that, for any justification 〈AN, AE〉, the graph GAE is
a connected subgraph of GA that contains R?. Therefore, by definition of GJ, we have
that GAE v GJ. Hence, AE is a subset of the instances of GJ (by definition of subgraph).
Thus, 〈AN, AE〉 is taken from GJ.

Consequently, we can limit ourselves to generate only the instances of GJ (encoded
as a gCNF). We are going to show how to do so in the following.

3.4.3 Graph-Based Generation Algorithm

Let J = 〈R?, X?, A〉 be a justification problem. We will introduce an algorithm that,
given J, returns GJ. This approach is based on the Breadth-First Search graph algo-
rithm (Russell and Norvig, 2015). Intuitively, we start by expanding the goal profile,
that is, we generate all the instances that mention R?. By doing so, we reach all pro-
files that are mentioned in these instances, that is, all profiles with depth 1. Once this
is done, we expand all profiles reached in the previous step (thus reaching all profiles
at a distance of 2 from the goal profile). This goes on until we explore the whole graph.

As discussed in Section 3.4.2, in practice, it might be useful to impose a maximum
depth to the explanations. We can do so by limiting the maximum distance from the
goal profile of the profiles we want to expand. Indeed, our algorithm will accept a
parameter d controlling this distance. In particular, if we set d to 0, we will only
expand the goal profile, and thus generate only the instances mentioning this profile.
Conversely, if we do not place any restriction (i.e., we set d to∞), the whole graph GJ

will be generated.
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Before presenting the algorithm, called GraphGen, let us introduce some data struc-
tures which will be used in its presentation.Q is a FIFO queue that contains the profiles
that have been reached and need to be expanded. Moreover, the sets P and A′ contain
the profiles and the instances of the graph generated so far, respectively. So then, let
us now present the algorithm. For every justification problem J and d ∈N∪ {∞ }, the
execution of GraphGen(J, d) goes as follows:16

1. Initialise P and A′ as empty sets;

2. InitialiseQ as a FIFO queue containing only the tuple (R?, 0) (the second element
indicates the depth, i.e., the distance from R?);

3. If Q is not empty, pop a tuple (R, d′) from Q. Otherwise, stop and return 〈P, A′〉;

4. If R is not in P:17

(4a) Add R to P;

(4b) If d′ = d, compute the set AR = {A′ | A′ / A, P(A′) = {R } } of intraprofile
instances mentioning R;18

(4c) Otherwise, compute the set of AR = {A′ | A′ /A, R ∈ P(A′) } of all instances
mentioning R. Furthermore, for all profiles R′ (distinct from R) that are
mentioned by some instance in AR, add (R′, d′ + 1) to Q;

(4d) Add all instances in AR to A′;

(4e) Return to Step 3.

Note that, if a profile is at depth d, we only generate the instances of the intrapro-
file axioms which mention it. This is because, if we expand the graph up to depth d,
we only want to consider the profiles up to that depth. Furthermore, since we only
consider voting scenarios with a finite number of profiles, this algorithm always termi-
nates.

We will now show that, if no bound is placed on the maximum depth, then this
algorithm returns GJ. In particular, we will show that, for a large enough d, this graph
is always fully explored. This will be useful later to prove the correctness of our main
justification algorithm. To this end, let distJ(R, R′) be the distance between R and R′

in GJ.

Lemma 3.5. For every justification problem J = 〈R?, X?, A〉, there is a d? ∈ N such that,
for every d > d?, the algorithm GraphGen(J, d) returns GJ.

16 Throughout the rest of this work, we will sometimes set the value of d to ∞. Intuitively, this means that
we place no bound on the maximum depth. Formally, the domain of this parameter is N ∪ {∞ }, where
for every d ∈N it holds that d <∞. How this is dealt with in terms of implementation is not important.
For example, in Python, one could use the value float("inf") to handle this case.

17 This means that R has not been expanded yet.
18 We will see in the next chapter how to construct all instances of an axiom that mention a given profile.
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Proof. Without loss of generality, fix a justification problem J. Let CJ(R
?) be the set of

profiles connected to R? in GJ. Then, let d? be:

d? = max
R∈CJ(R?)

{distJ(R, R?)}+ 1

That is, the maximum depth of any profile connected to R? plus one. Note that
d? ∈N, as we only consider a finite number of profiles.

Let 〈P, A′〉 be the output of GraphGen(J, d?) and let GJ = 〈PJ, AJ〉. We will show
that these two graphs are the same. First, we will show by induction that PJ ⊆ P. Then,
we will argue that PJ ⊇ P is also true. Finally, we will show that AJ = A′. We will
finally argue that the same holds for every depth greater than d?. This is enough to
prove our claim.

Thus, let us show that P contains all R ∈ PJ by induction over distJ(R, R?). In the
following, recall that every R ∈ PJ has distJ(R, R?) < d?.

• Clearly, R? is the only profile with a distance of 0 from itself. This profile is
trivially always added to P.

• Suppose that all profiles that lie at a distance d from R? are added to P. Then,
given a profile R at depth d+ 1, there is an edge A′ connecting R and a profile
R′ at depth d (by the definitions of distance and path). Since we generate all the
edges connected to R′ (as d < d?), R will be added to the queue (Step (4c)). Thus,
R will be eventually added to P as well.

Hence, by induction, P ⊆ PJ. Furthermore, no profile that is not connected to R? can
be reached, as profiles are only reached through their connections to R?. Consequently,
P = PJ.

Finally, let us look at A′ and AJ. Consider any instance A′ ∈ AJ. Surely, by definition
of AJ, we must have that P(A′) ⊆ PJ. Since we reach and expand all profiles in PJ,
surely A′ will be generated.19 Hence, A′ ⊆ AJ. Since no other kind of instances can be
generated, we have that A′ = AJ.

Finally, note that, since we only made use of the fact that distJ(R, R?) < d? for every
R ∈ PJ, the above arguments hold for every d > d?. This concludes the proof.

Notice that an immediate consequence of the above lemma is that GraphGen(J, ∞)

returns GJ.

Corollary 3.6. For every justification problem J, GraphGen(J, ∞) returns GJ.

Proof. This is an immediate consequence of Lemma 3.5.

Next, we are going to show how this generation algorithm can be used to interleave
generation and solving in a principled way.

19 Note that the condition in Step (4b) is never verified in this case, as d? is greater than the distance of any
profile from R?.
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3.4.4 Iterative Deepening Algorithm

We now propose our main justification algorithm. In this variant, conceptually inspired
by the Iterative Deepening Search graph algorithm (Russell and Norvig, 2015), we
interleave the generation step with the solving step. That is, every time we explore all
profiles of depth d, we try to search for a justification, and then continue the generation
(with depth d+1). This goes on until either the full graph is explored or when we reach
some maximum depth dmax. The main advantage of this is that, if an explanation exists
“close” (in the sense discussed earlier) to the goal profile, we do not need to generate
the whole graph. We now present the algorithm, which is called IterJustify.

Notice that we will define it in terms of a generic graph generation algorithm Gen.20

After, we will we prove that, if we use GraphGen (as defined above) in combination
with IterJustify, we obtain a correct justification algorithm. Furthermore, given a
graph G = 〈P, A′〉, we define Φ(G) = ΦA′ , that is, the gCNF encoding of the instances
of G. Then, given a justification problem J = 〈R?, X?, A〉 and a maximum depth dmax ∈
N∪ {∞ }, the execution of IterJustify(J, dmax, Gen) unfolds as follows:

1. Initialise d as 0 and G−1 as the empty graph 〈∅, ∅〉;

2. If d > dmax, then stop;

3. Otherwise, generate Gd by calling Gen(J, d);

4. If Gd = Gd−1, then stop;21

5. Otherwise, let Φd be Φ(Gd) ∪ {ϕGoal }. While computing this, keep track of
which axiom A ∈A and which instance A′ gave rise to each formula ϕA′ ∈ Φd;

6. Check whether Φd is satisfiable. If it is, jump to Step 7. If it is not, repeat the
steps below until no new gMUS can be computed:

(6a) Compute a new gMUS Φ? of Φd such that ϕGoal ∈ Φ?. Define AE as the
set of instances corresponding to Φ? \ {ϕGoal };

(6b) For every AN such that AE /AN and for no A ⊂ AN the same holds, if ΦAN

is satisfiable, return the justification 〈AN, AE〉 (and continue the execution);

7. Set d to d+ 1 and then return to Step 2.

Before discussing the algorithm, notice that, strictly speaking, IterJustify defines a
family of justification algorithms (one for every dmax and Gen). Thus, we will denote
the algorithm obtained by fixing these two parameters as IterJustify(·, dmax, Gen).

20 We do so because, later on in this work, we will introduce an alternative graph generation algorithm.
Thus, having a modular notation will allow to discuss more easily about the different generation algo-
rithms.

21 This means that we reached a fixed point, that is, the whole graph has been explored (and we won’t find
any more justifications).
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Furthermore, every time d is increased, we regenerate the whole graph up to depth
d. An alternative approach would be to resume the generation. That is, we expand the
previously generated graph of one “step” (i.e., increase the depth of one). In terms of
complexity, this makes no difference, as the complexity of the search is dominated by
the generation of the deepest graph. We found that, in our experiments, this made no
substantial difference as well. The only difference is that some justifications might be
returned twice, but this is an implementation detail that is not a problem in practice.
In light of this, we choose to present this version, as we find it leads to a much cleaner
presentation and is more in line with the Iterative Deepening Search algorithm which
we have taken inspiration from (Russell and Norvig, 2015).

As a final comment, notice that if Gen always terminates and eventually reaches a
fixed point in the generation (i.e., for every justification problem J there is a d such
that Gen(J, d) = Gen(J, d+ 1)), then IterJustify(J, dmax, Gen) terminates for every
J and dmax. As we discussed, GraphGen satisfies both conditions.

We will now prove the soundess (for every dmax) and completeness (for dmax =∞)
of IterJustify when using the graph generation algorithm GraphGen introduced
above. To do so, we will first prove two intermediate results where we give some
conditions on the graph generation algorithm that guarantee soundness and complete-
ness.22 Then, we will show that GraphGen satisfies both conditions. In the following,
a graph generation algorithm is an algorithm that, given a justification problem and an
element of N∪ {∞ }, returns an instance graph.

The first condition regards soundness. Essentially, it states that, if a generation al-
gorithm Gen only returns subgraphs of GJ, then, if we use it in combination with
IterJustify, we obtain a sound algorithm.

Lemma 3.7. Let Gen be a graph generation algorithm. If, for every justification problem
J and d ∈ N ∪ {∞ }, the algorithm Gen(J, d) returns a subgraph of GJ, then for every
dmax ∈N∪ {∞ } the algorithm IterJustify(·, dmax, Gen) is sound.

Proof. Suppose that, for every justification problem J and d ∈N∪ {∞ }, the algorithm
Gen(J, d) returns a subgraph of GJ. We will show that then, for every dmax ∈N∪ {∞ },
IterJustify(·, dmax, Gen) is sound.

Without loss of generality, fix a justification problem J. Let Gd be the graph returned
by Gen(J, d). Further, let Φd = Φ(Gd)∪ {ϕGoal } (as defined in Step 5 of IterJustify).
Since, by hypothesis, for every d we have that Gd is a subgraph of GJ, we must have
that, for every d, Φd ⊆ ΦJ (the full gCNF formula). This holds because any such Φd
can only contain the encodings of some instances of A, and ΦJ is composed of the
encoding of all the instances of A (and both formulae contain ϕGoal). This implies
that, for any d, any gMUS of Φd is a gMUS of ΦJ, as any subset of Φd is a subset of
ΦJ.

22 We take this approach because, later in this chapter, we will need these conditions for another result.
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Therefore, for every d ∈ N ∪ {∞ }, the following holds. If in Step (6b) we return a
pair of axiom sets 〈AN, AE〉, then it means that 〈AN, AE〉 is a justification for J. This
holds because such a pair must surely satisfy all conditions of Theorem 3.2. Indeed,
by the above argument, if we return 〈AN, AE〉, then it means that ΦAE ∪ {ϕgoal }

is a gMUS of ΦJ. This holds because ΦAE ∪ {ϕgoal } is equal to some gMUS Φ? of
Φd (as seen in Step (6a)), and thus of ΦJ. This satisfies Condition (i) of Theorem 3.2.
Furthermore, all the other conditions of the theorem are checked in Step (6b).

Since the above holds for every d ∈N∪ {∞ }, surely for any dmaxN∪ {∞ } we must
have that the algorithm IterJustify(·, dmax, Gen) can only return justifications for J.
Therefore, this algorithm is sound for every dmax.

The second condition regards completeness. Essentially, it states the following. Sup-
pose that the graph generation algorithm Gen, for some d, returns a graph that con-
tains at least one justification for every (subset of a) normative basis that admits one.
Then, if we use it in combination with IterJustify, we obtain a complete algorithm
for dmax =∞.

Lemma 3.8. Let Gen be a graph generation algorithm. Suppose that for every justification
problem J, there is a d? ∈N such that the following conditions are satisfied:

(i) For every distinct d, d′ ∈ { 0, . . . , d? }, the graph returned by Gen(J, d) is not equal
to the graph returned by Gen(J, d′).23

(ii) Gen(J, d?) returns a graph G? such that, for every set of axioms AN such that a justifi-
cation for J with normative basis AN exists, there is a justification with normative basis
AN for J taken from G?.

Then, IterJustify(·, ∞, Gen) is complete.

Proof. Without loss of generality, fix any justification problem J. Suppose that, for some
d? ∈N, the two conditions stated in the lemma hold. We will refer to these conditions
as Condition (i) and (ii), respectively. Then, we will show that IterJustify(·, ∞, Gen)

is complete.
Before going on, recall that a justification algorithm is complete if the following

holds. For any input problem J and for all sets of axioms AN, if a justification for J

that uses AN as a normative basis exists, then on input J the algorithm returns at least
one justification with normative basis A (for some A ⊆ AN).

So then, let 〈AN, AE〉 be a justification for J. If we show that IterJustify(J, ∞, Gen)

returns some justification with normative basis A (where A ⊆ AN) we are done. In-
deed, since no restriction is placed over 〈AN, AE〉, the same must hold for any justifi-
cation. Note that this satisfies our notion of completeness.

23 Intuitively, this means that, if dmax = ∞, we will reach depth d? before termination. Indeed, recall that
IterJustify halts when a fixed point in the generation is encountered.

44



3.4 graph-based approach

Since dmax =∞, the only way for IterJustify to stop is by the check in Step 4. That is,
we stop when we reach a fixed point in the graph generation. However, by Condition
(i), if the check in Step 4 is verified, we must have generated some graph G? with
the property stated in Condition (ii). By this condition, there must exist a justification
〈AN, AE?〉 for J taken from G? (for some AE?). Therefore, while searching for the
gMUSes of Φ(G?)∪ {ϕGoal } (Step 6 of IterJustify), we will find ΦAE? ∪ {ϕGoal }.

Hence, we will surely return a justification 〈A, AE?〉 such that A ⊆ AN. This is
because we return all minimal justifications with explanation AE? (Step (6b) of Iter-
Justify), and a minimal justification 〈A, AE?〉 for some A ⊆ AN must exist.24

Thus, IterJustify(·, ∞, Gen) is complete.

We are now ready to state our main result.

Theorem 3.9 (Correctness of the Graph-Based Algorithm). For every dmax ∈ N ∪ {∞ },
the justification algorithm IterJustify(·, dmax, GraphGen) is sound. Furthermore, the jus-
tification algorithm IterJustify(·, ∞, GraphGen) is correct.

Proof. First, we will prove that, regardless of the maximum depth dmax, the algorithm
is sound (1). Then, we will show that for dmax =∞ the algorithm is also complete (2).
The claim that for dmax =∞ the algorithm is correct follows from these two conditions.

(1) By construction, the graphs returned by GraphGen are always composed of the
profiles connected to R? and the relative instances. Hence, any such graph is a
subgraph of GJ. Thus, by Lemma 3.7, IterJustify(·, dmax, GraphGen) is sound
for every dmax ∈N∪ {∞ }.

(2) Fix, without any loss of generality, a justification problem J. Suppose that d? is
the smallest d ∈N such that GraphGen(J, d) returns GJ. Such a d? surely exists
(Lemma 3.5). We will prove that d? that satisfies the Conditions (i) and (ii) of
Lemma 3.8.

(i) Clearly, for every d, if GraphGen(J, d) = GraphGen(J, d + 1), then it
means that GraphGen(J, d) = GJ. This holds because, if by augmenting
the maximum distance we do not add any new profiles or instances, it
means that the graph returned by GraphGen(J, d) already contains all the
profiles connected to the goal profile and the instances that mention them.
But d? is, by hypothesis, the smallest d such that GraphGen(J, d) = GJ.
Therefore, all graphs generated for depths smaller than d? are distinct from
one another. This satisfies the first condition of Lemma 3.8.

(ii) By Corollary 3.4, all justifications of J are taken from GJ, which is the graph
returned by GraphGen(J, d?). This is enough to satisfy the second condi-
tion of Lemma 3.8.

24 This holds because, given 〈AN, AE?〉, we can remove all the unused axioms in AN one-by-one until we
are left with a minimal justification.
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Therefore, by Lemma 3.8, IterJustify(·, ∞, GraphGen) is complete.

This concludes the proof.

We argue that this algorithm has some interesting practical advantages. First, ab-
stract completeness might not be that important in real-world applications, as users
might be interested only in one justification. Thus, it might not be worth it to spend an
unreasonable amount of computing time to search for more once one is found. This
algorithm enables us to stop the search as soon as a justification is returned, with-
out generating the full graph. Secondly, by generating the instances closer to the goal
profile first, we will first return the most shallow explanations (in the sense we used
so far). As we argued earlier, such explanations might be shorter, and thus easier to
understand. This aligns well with our goal: providing explanatory justifications to the
users. Thirdly, dmax acts as a parameter tuning the trade-off between completeness
and performance. Indeed, we can choose how much of the graph to explore, from the
goal profile only (dmax = 0) to the whole graph (dmax = ∞). In other words, we have
an algorithm that allows for theoretical completeness and leaves us to decide whether
we are interested in finding all justifications or not. This allows for greater control over
the amount of computational resources we want to use.25

3.4.5 Existential and Universal Axioms (Reprise)

To conclude, let us briefly comment on some limitations of our algorithm. In particular,
we will discuss the performance of IterJustify when existential axioms (as defined in
Section 2.2.2) are included in the corpus.

First, recall that the algorithm we introduced works (in principle) for any corpus of
axioms (provided that the axioms can be encoded as gCNF formulae). However, as
noted in Section 2.2.3, all the axioms that we will use in our experiments are universal.
To see why we decided to focus on this case, recall that the main advantage of our
algorithm is that it can be used to interleave generation and solving. When we include
existential axioms in our corpus, this is no longer possible.

To understand this, consider the following. In our approach, with the notion of in-
stance graph, we impose a structure to the space of all profiles. Intuitively, two profiles
are near each other if there is some axiom instance that mentions them together. This
structure is then used to guide the generation phase. This, in turn, enables us to gen-
erate the instances procedurally and to interleave the generation and solving steps.

For this very reason, our algorithm might be less suitable to work with axioms that
existentially quantify over profiles. Indeed, consider the axiom of Non-Imposition.

25 As we said, real-world users might be satisfied with just one explanation. Thus, in our experiments, we
will focus on this case. However, scholars might be interested in finding all justifications (e.g., for gaining
deeper insights into the nature of this problem). That is why we still insisted on the importance of (and
hence proved) completeness.
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This axiom states the following: “for any x ∈ X, there exists one profile R such that
F(R) = { x }”.26 Then, for every x ∈ X, we have an instance stating the following:

“There exists a profile R ∈ R(X)+ such that F(R) = { x } holds.”

Equivalently, for a voting scenario with ` profiles, we could express this as a disjunc-
tion over all profiles:

“The disjunction
[
F(R1) = { x }

]
∨ · · · ∨

[
F(R`) = { x }

]
must be true.”

Therefore, every instance A′ / Non-Imposition has that P(A′) = R(X)+.27 This
would mean that, for any corpus A containing Non-Imposition, in the corresponding
instance graph all profiles would be connected with a distance of 1. Thus, we would
not be able to properly interleave the generation and solving steps, as we would need
to generate all the instances in one iteration. A similar argument can be made for all
axioms that existentially quantify over R(X)+.

However, considering the goal of this work, we claim that this is not problematic.
Indeed, justifications grounded in existential axioms might not be that interesting. Al-
though such a justification is conceivable, we argue that it would be contrived and,
in a sense, unappealing. This is because an explanation involving an existential axiom
would somehow need to refer to (almost) the whole set of profiles. To see why, consider
the following example. A justification for { x } in R? that uses Non-Imposition could
have the following form. Suppose that we could justify an outcome different from
{ x } for every profile in R(X)+ \ {R? }. Then, if we want to satisfy Non-Imposition,
we must have that F(R?) = { x }, since one profile with outcome { x } must exist. Thus,
F(R?) = { x }. Notice that such an explanation would be prohibitively large, since it
would need to concretely refer to every profile in the scenario.28

Of course, we do not claim that this is the only conceivable kind of explanation
involving Non-Imposition. More generally, we do not claim that no interesting jus-
tifications that use existential axioms exist. For instance, with very small scenarios,
where the number of profiles is limited, one could imagine an appealing explanation
that mentions all profiles. However, we argue that having an algorithm that is tailored
(in terms of performance) towards universal axioms might still be of interest. Indeed,
as argued above, from the point of view of explanatoriness,29 universal axioms seem
to be more useful in general. Hence, we deem this focus to be reasonable.

26 Perhaps, a more reasonable (albeit more restrictive) condition would be the following: “for every n with
1 6 n 6 n? and every x ∈ X, there exists a profile R ∈ R(X)n such that F(R) = { x }”. However, for clarity,
we stick to the less restrictive definition. The substance of the argument still stands.

27 We omit the gCNF encoding for simplicity. What is important here is that the resulting formula would
necessarily need to refer to all profiles in the scenario.

28 Indeed, note that, in our language, there are no quantifiers. Thus, every object that the instances in an
explanation constrain must be mentioned concretely.

29 Besides the formal notion of explanatoriness of a justification 〈AN, AE〉, we also use the word “ex-
planatoriness” to refer to “the quality of being explanatory”. The context should always be enough to
determine which notion we are referring to. The meaning of “being explanatory” will be discussed in
Chapter 5.
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At this point, one final remark is in order. In sum, the difficulty regarding existential
axioms stems from the fact that the instances of such axioms constrain together a
large number of profiles. One could, in contrast, (potentially) conceive an axiom that
existentially quantifies over a small set of profiles. Such an axiom seems not to be
as problematic for our approach, as its instances would mention a small number of
profiles. However, albeit logically possible, we are not aware of an appealing example
from the literature of an axiom in this form.

3.5 heuristics

In this section, we introduce two classes of heuristics that preserve correctness when
combined with the justification algorithm introduced above.

Up to this point, we described two approaches that work (in principle) for any
corpus. However, although one could define as many axioms as one likes, it seems
reasonable to assume that the interesting, appealing and useful axioms are a subset of
the logically possible ones. Therefore, it might be fruitful to focus on a particular set of
appealing axioms and design a set of algorithmic improvements specific to these. We
call, perhaps with an abuse of terminology, these algorithmic improvements heuristics.
Intuitively, these are ways to alter the generation phase of the algorithm in order to
improve the performance of the general algorithm. We define two general ways to do
so, that is, two families of heuristics.30

We stress that, while the heuristics of these families are specific to some (sets of) ax-
ioms (that is, they exploit the concrete form of some specific axioms), they are not
constrained to a particular corpus. That is, if we design a heuristic for a set of axioms
A, we want this to work for all corpora A such that A ⊆A.

3.5.1 Avoiding Redundancy: Implied Instances

An instance graph is, as the name goes, a structure of axiom instances. Each of these
instances constrains in some way the possible outcomes for the profiles it mentions.
Let A′ /A be one such instance for some axiom A. Suppose that, in the same instance
graph, we have another set of axiom instances A? /A that enforces the same constraint
that A′ enforces.31 Then, the constraint enforced by A′ is, in some sense, redundant.
We call such an instance an implied instance. Before giving the formal definition, let us
look at an example.

Example 3.5. Consider the three profiles R, R′ and R′′. Suppose that profile R′ can be
obtained from R by raising the support of alternative x?. Thus, we have an instance

30 The specific heuristics that we use will be discussed in the next chapter.
31 Note that, in general, A? might be stronger than A′. That is, A? implies A′, but the opposite needs not to

hold.
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A′ of Positive Responsiveness which constrains R and R′, stating that if x? wins in R

then it must be the sole winner in R′.
Further, similarly as before, suppose that R′′ can be obtained from R′ by raising the

support of x?. Again, we have an instance A′′ of the same axiom connecting R′ and
R′′. This instance states that if x? wins in R′ then it must be the sole winner in R′′.

However, if we can obtain R′ from R and R′′ from R′ by raising the support of x?,
then we can obtain R′′ from R in the same way. Thus, we also have an instance A?

connecting R and R′′, stating that if x? wins in R then it must be the sole winner in R′′

In this case, A? is an implied instance of {A′, A′′ }. Indeed, suppose that A′ and A′′

hold. Then, if x? wins in R, by A′, we have F(R′) = { x? }. But by A′′, then F(R′′) =

{ x? } must hold as well. Hence, if F satisfies A′ and A′′, it must also satisfy A?. Thus,
{A′, A′′ } implies A?. 4

We will prove that we can avoid generating such instances and still have a correct
algorithm (provided that we generate the instances that imply them). In other words,
we can add this heuristic to our graph algorithm without losing correctness (for dmax =∞). The advantage here is in terms of computational resources. In general, generating
an instance A′ has a certain computational cost, both in terms of computing time and
in terms of the memory needed to store it. If we know that this constraint is already
enforced by some other instances that have already been generated (or surely will be),
we can avoid generating it and save the associated computational costs. Let us now
look at this more formally.

Definition 3.4 (Implicant Graphs). Let G = 〈P, A′〉 be an instance graph and A a set of
axioms such that A′ / A. An implicant graph of G with respect to A is an instance graph
G− = 〈P, A−〉 where G− v G and, for any instance A′ ∈ A′ and axiom A ∈ A such that
A′ /A, there is a set of instances A? ⊆ A− with A? /A and I(A?) ⊆ I(A′).

In other words, for a given graph G, an implicant graph is a subgraph of G whose
instances logically entail all the instances of G. Given an instance A′ /A, we call a set of
instances A? /A such that I(A?) ⊆ I(A′) an implicant set of A′ for A. The requirement
of an implicant set to be composed of instances of the same axiom of the implied
instance serves to guarantee completeness, and will be made clear during the proof
of the next lemma (Lemma 3.10).

For a given justification problem J = 〈R?, X?, A〉, recall that GJ is the maximum
connected subgraph of GA containing R?. By Corollary 3.4, all justifications of J can
be found within this graph. In the following, we are going to show we can restrict our
generation to any implicant graph G−

J of GJ with respect to A and still have a correct
algorithm. To do so, we will first show that, if we restrict ourselves to an implicant
graph of GJ (with respect to A), we can find at least one justification for all normative
bases that admit one.

Lemma 3.10. Let 〈AN, AE〉 be a justification for some justification problem J = 〈R?, X?, A〉.
If G−

J is an implicant graph of GJ with respect to A, then, for every set of axioms AN such
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that a justification for J with normative basis AN exists, there is a justification with normative
basis AN taken from G−

J .

Proof. Let J = 〈R?, X?, A〉 be a justification problem and G−
J an implicant graph of GJ

with respect to A. Moreover, let AN be a set of axioms such that a justification for J

exists. Let 〈AN, AE〉 be such a justification. We will proceed constructively to find a
justification 〈AN, AE?〉 ∼ G−

J (for some AE?). This is enough to show our goal.
Recall that AE is composed of instances of GJ (Corollary 3.4). Thus, since G−

J is an
implicant graph of GJ, every instance in AE is either in G−

J or implied by some set
of instances in G−

J . So then, let us construct the set A from AE as follows. Consider a
A′ ∈ AE and some A ∈ AN such that A′ /A (such an A surely exists, by the relevance
of 〈AN, AE〉). If A′ is not within the instances of G−

J , then substitute A′ with one of its
implicant sets for A (such an implicant set exists by definition of implicant graph, as
A ∈A). Otherwise, keep A′ in A.

Clearly, A entails AE, because every instance in AE is either in A or implied by
some instances in it. Thus, any F ∈ I(A) is also in I(AE). By explanatoriness of AE,
this means that any such F elects the target outcome in the goal profile. Now, take
AE? to be any subset of A that minimally explains J. Such a set exists, because A

already enforces F(R?) = X?: thus, we can remove instances from A one-by-one until
we are left with a set that minimally explains the goal. Hence, explanatoriness holds
for 〈AN, AE?〉.32

Further, by construction, AE? is composed only of instances of AN.33 Thus, rele-
vance also holds. Moreover, adequacy and non-triviality hold by virtue of the fact
that 〈AN, AE〉 is a justification for J (and hence we have that AN is a non-trivial subset
of A).

Finally, 〈AN, AE?〉 is a justification for J, and by construction all instances of AE?

are in G−
J . Therefore, 〈AN, AE?〉 ∼ G−

J .

In the next chapter, we are going to show how to modify the GraphGen algorithm
to generate an implied graph of GJ instead of the full graph. Now, we will lay some
basic conditions for a heuristic based on these notions. Further, we will prove that any
such heuristic, when used in combination with IterJustify, leads to a sound (for every
dmax) and complete (for dmax =∞). Let us first define precisely this notion.

Definition 3.5 (Implied Instance Heuristics). A graph generation algorithm Heur(·, ·)
is an implied instance heuristic if, for every justification problem J = 〈R?, X?, A〉, the
following conditions hold:

(i) For every d ∈N∪ {∞ }, Heur(J, d) returns a subgraph of GJ.

32 Here, we do not take A directly as A might be stronger than AE. That is, in general, we are not guaranteed
that A minimally explains J.

33 That is why we want any set of implicants of some instance A′ /A to be composed of instances of A; if
this were not true, we could not guarantee completeness in the general case.
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(ii) There is a d? ∈N such that, for every distinct d, d′ ∈ { 0, . . . , d? }, the graph returned
by Heur(J, d) is not equal to the graph returned by Heur(J, d′). Further, Heur(J, d?)
returns an implicant graph of GJ with respect to A.

Intuitively, this definition prescribes that any such heuristic must only return graphs
that are composed of the instances of GJ, and that, eventually, it must generate an
implicant graph of GJ. We require all graphs that we generate before the implicant
graph to be distinct from each other because IterJustify halts once a fixed point in the
graph generation is reached. Note that, in particular, GraphGen is an implied instance
heuristic.

We will now show that we can use any such heuristic in combination with Iter-
Justify and obtain a correct algorithm. More precisely, we will show that, for every
maximum depth, we will obtain a sound algorithm. Further, when we generate the
whole graph, we have a complete algorithm.

Theorem 3.11 (Correctness of Implied Instance Heuristics). Let Heur be an implied
instance heuristic. Then, for every dmax ∈ N ∪ {∞ }, algorithm IterJustify(·, dmax, Heur)

is sound. Further, IterJustify(·, ∞, Heur) is correct.

Proof. Clearly, Condition (i) of the definition of implied instance heuristics satisfies
the condition of soudness that we described in Lemma 3.7. Thus, for every dmax ∈
N∪ {∞ }, the algorithm IterJustify(·, dmax, Heur) is sound.

Furthermore, fix a justification problem J = 〈R?, X?, A〉. By the Condition (ii) of
the definition of implied instance heuristics, for some d? ∈N, Heur(J, d?) returns an
implicant graph of GJ with respect to A. Let this graph be G−

J . Further, by the same
condition, all the graphs generated up to that point are distinct from each other. Finally,
recall that, by Lemma 3.10, for every justification 〈AN, AE〉 of J, there is a justification
〈AN, AE?〉 for J taken from G−

J . But this means that Heur satisfies the condition of
completeness we described in Lemma 3.8. Therefore, IterJustify(·, ∞, Heur) is com-
plete, and hence correct.

This concludes the proof.

3.5.2 Reducing Depth: Derived Axioms

We present another way to speed up the search for justifications. In this approach,
common patterns of interaction between axioms (that involve multiple profiles) that
are often found in explanations are “aggregated” into a single intraprofile axiom. In
other words, a common explanation pattern that might involve multiple profiles is
reduced to a single instance which mentions a single profile.

To see the advantage of this, suppose we are using the algorithm IterJustify, and
are interested in finding only one justification. That is, we stop the execution as soon
as one is found. Intuitively, this algorithm tries to find one explanation that is as close
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to the goal profile as possible (in the sense we used so far). It does so by generating
all profiles at depth d, searching for a justification within this depth, and then, in
case of failure, moving on to depth d+ 1. This heuristic’s objective is to “reduce” an
explanation that would overall require a depth of d into a single instance that only
mentions a profile at depth d′ (with d′ < d). Clearly, doing this allows stopping the
generation at depth d′ instead of generating the whole graph up to depth d. Let us
make this notion more precise.

Definition 3.6 (Derived Axioms). Let A be a set of axioms with I(A) 6= ∅. A derived
axiom of A is an axiom Ad 6∈ A such that I(A) ⊆ I(Ad) and, for all A′ /Ad, it holds that
|P(A′)| = 1.

Example 3.6. Recall that the axiom of Positive Responsiveness states that, if profile R′

can be obtained from R by raising the support of an alternative x? in some preference
order, then x? ∈ F(R) implies F(R′) = { x? }. Furthermore, the axiom of Cancellation

states that for all profiles R, if all alternatives tie in a majority contest, then F(R) = X

must hold.
Given the set {Positive Responsiveness, Cancellation }, we can define the follow-

ing derived axiom A?:

“For all profiles R, if R can be obtained from some Cancellation profile by raising
the support an alternative x?, then F(R) = { x? }.”

It is trivial to see that any F that satisfies Positive Responsiveness and Cancella-
tion must satisfy this axiom as well. 4

Let Ad be a derived axiom of some (non-trivial) set A. We will show that, for every
instance A′d /Ad, we can find a set of instances of A that imply A′d. Intuitively, this
allows us to do the following. Given an explanation containing some instances of Ad,
we can substitute these instances by the instances of A that imply them. This fact will
be used in the presentation of the upcoming algorithm. Thus, let us show this.

Lemma 3.12. Let Ad be a derived axiom of a non-trivial set of axioms A. For every instance
A′d /Ad, there is a set of instances A′ /A such that I(A′) ⊆ I(A′d).

Proof. Let Ad be a derived axiom of A. Without loss of generality, fix a specific instance
A?
d / Ad. We will construct a set A? /A such that I(A?) ⊆ I(A?

d).
Recall that the interpretation of an axiom is equal to the intersection of the interpre-

tations of all its instances (see Section 3.2.2). Consequently, given any instance A′d /Ad,
the interpretation of Ad must be a subset of the interpretation of A′d. Hence, I(Ad) ⊆
I(A?

d). However, by the definition of derived axioms, we have that I(A) ⊆ I(Ad); thus,
I(A) ⊆ I(A?

d).
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Now, let A? = {A′ | A′ / A } (i.e., the set of all instances of A). Clearly, I(A?) = I(A),
as the interpretation of both sets is equal to

⋂
A′/A I(A′). Therefore, by the above

arguments, we have that I(A?) ⊆ I(A?
d). This concludes the proof.34

We will now introduce a variant of our justification algorithm, IterJustify, based
on derived axioms. This algorithm is called DerivedIterJustify, and will accept a set
of axioms Ad as a parameter. Essentially, for an input problem J = 〈R?, X?, A〉, this
algorithm will select the axioms of Ad that are derived axioms of A. During the gener-
ation phase, it will generate the instances of these axioms as well. The core mechanism
of the algorithm remains the same. However, note that a justification retrieved in this
way might not be, technically speaking, a justification for J. This is because it could be
grounded in some axioms in Ad that are not in A. To solve this, the algorithm will also
convert back these justifications into justifications for J. So then, let us present the algo-
rithm. The execution of DerivedIterJustify(J, dmax, Gen, Ad) (with J = 〈R?, X?, A〉)
goes as follows:

1. Let A?
d = {Ad ∈ Ad | Ad is a derived axiom of some non-trivial A ⊆A };35

2. Let J′ = 〈R?, X?, A∪A?
d〉;

3. Execute IterJustify(J′, dmax, Gen). When a justification 〈AN, AE〉 is returned,
freeze the execution and perform the following steps:

(3a) If AN ⊆A, return 〈AN, AE〉 and jump to Step (3g);

(3b) Compute A by replacing in AE every instance A′ that is not an instance of
A with the instances of A that imply it (which exist, as per Lemma 3.12);36

(3c) Let Φ? be a gMUS of ΦA ∪ {ϕGoal } such that ϕGoal ∈ Φ?;37

(3d) Let AE? be the set of instances corresponding to Φ? \ {ϕGoal };

(3e) Let AN? be a set such that AN? ⊆A and AE? /AN?;

(3f) Check whether ΦAN? is satisfiable.38 If it is, return 〈AN?, AE?〉;

(3g) Resume the execution of IterJustify.

34 Note that, although we have shown that the lemma holds for the set of all instances of A, in practice we
will be able to find much smaller sets. In particular, for the derived axioms we will present in the next
chapter, this set will be composed of only a handful of instances.

35 In practice, this can be checked by querying a (manually crafted) database that stores, for every derived
axiom Ad, the non-trivial sets A ⊆A that imply Ad.

36 As we will see in the next chapter, derived axioms will be defined in such a way that finding these
instances will be straightforward.

37 This step is necessary because we are substituting some instances of AE with some other (possibly)
stronger instances. Thus, we need to make sure that the resulting set is still minimally unsatisfiable.

38 As AN? might be, in general, stronger than AN, even if AN is non-trivial, we need to check for the
non-triviality of AN? as well.
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We will now prove that, for every graph generation algorithm, this approach pre-
serves soundness and completeness.

Theorem 3.13 (Correctness of Derived Axiom Heuristics). Let Ad be a set of axioms,
dmax ∈ N ∪ {∞ } and Gen a graph generation algorithm. If IterJustify(·, dmax, Gen) is
sound, then DerivedIterJustify(·, dmax, Gen, Ad) is also sound. If it is complete, then
DerivedIterJustify(·, dmax, Gen, Ad) is also complete.

Proof. Let us prove the two statements separately.

• Suppose that IterJustify(·, dmax, Gen) is sound. Therefore, every pair of sets
of axioms returned by this algorithm is a justification for the input justification
problem. Thus, every 〈AN, AE〉 found in Step 3 is also a justification for J′ (as
defined in Step 2 of the algorithm). Firstly, if 〈AN, AE〉 is a justification for J,
then we are done, as it is returned as it is in Step (3a). Thus, let us suppose that
〈AN, AE〉 is not a justification for J. In this case, the algorithm continues the
execution, until it reaches Step (3f) and returns a pair of axioms 〈AN?, AE?〉. We
will show that this is a justification for J. This is enough to show our claim. To
do so, we will show that this pair satisfies the three conditions of Theorem 3.2.

(i) This condition requires ΦAE? ∪ {ϕGoal } to be a gMUS of ΦJ. Consider the
set A we compute in Step (3b). Surely, ΦA ∪ {ϕGoal } is a subset of ΦJ, the
full gCNF encoding of J (as A only contains instances of A). Thus, a gMUS
of the former is a gMUS of the latter. Consequently, the formula Φ? (as
computed in Step (3c)) is a gMUS of ΦJ. Note that Φ? = ΦAE? ∪ {ϕGoal };
therefore, AE? satisfies this condition.

(ii) This condition requires that AN? ⊆ A and AE? /AN?. This is checked at
Step (3e).

(iii) This condition requires that ΦAN? is satisfiable. This is checked in Step (3f).

Therefore, 〈AN?, AE?〉 is a justification for J.

• Suppose that IterJustify(·, dmax, Gen) is complete. We will first show that any
justification for J is also a justification for J′. To do so, notice that both jus-
tification problems aim at justifying the outcome X? for profile R?. Then, let
〈AN, AE〉 be a justification for J. Clearly, 〈AN, AE〉 is a justification for J′: the
only condition that might be violated is adequacy, as the conditions of explana-
toriness, relevance and non-triviality do not depend on A (which is the only
thing that differentiates J and J′). However, if adequacy holds for J, this means
that AN ⊆A; but this implies that AN ⊆ (A∪A?

d), which satisfies adequacy for
J′. Thus, 〈AN, AE〉 is a justification for J′.

Recall that, by hypothesis, IterJustify(·, dmax, Gen) is complete. Thus, for every
justification 〈AN, AE〉 of J′, we find a justification with normative basis A where
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A ⊆ AN. So then, let 〈AN, AE〉 be a justification for J. As shown above, it is also a
justification for J′, and thus we will find some justification with normative basis
A such that A ⊆ AN. Let this justification be 〈A, AE?〉. Since A ⊆ A holds, this
justification will be returned as it is (Step (3a)). Therefore, we return 〈A, AE?〉.
This satisfies our definition of completeness.

This concludes the proof.

Finally, note that to be helpful, a derived axiom needs to be quickly computable.
Intuitively, computing the instances of this axiom Ad should not slow down the gen-
eration so much that it would be preferable to generate a deeper graph rather than
incorporating this derived axiom. Therefore, not all “common explanation patterns”
will be turned into derived axioms, but only those for which we were able to find a
fast implementation.

3.5.3 Redundancy versus Depth

At this point, a final discussion is in order. The two heuristics that we defined seem to
go in two opposite directions. On the one hand, implied instance heuristics aim to re-
move redundant constraints to speed up the computation. On the other hand, derived
axioms aim at adding more (possibly redundant) constraints to facilitate the reasoner
to extract a solution more easily (up to the same depth). The two seem to contradict
each other, as adding more constraints requires more computing power, and removing
constraints makes it harder for the solver to find a gMUS.39 However, we stress that,
regarding algorithmic optimisation, there is not always a clear “best” heuristic. That
is, many opposite optimisation directions might exist, and these generally need to be
carefully balanced. Indeed, usually, we cannot merely choose the best optimisation
strategy and “maximise” that one.

We believe that this idea applies to this problem as well. Indeed, as stated in the
introduction, the automated justification of collective decisions is a hard problem in
the complexity-theoretic sense (Boixel and de Haan, 2021). Therefore, no “best” (in
general) optimisation approach likely exists. Consequently, we formalised these two
design principles (reducing computation time and adding more constraints) as the two
above heuristics. It is then a matter of experimentation to find the right balance, but
we found that both can be useful together. We will discuss the concrete heuristics used
in the next chapter.

39 Indeed, recall that gMUSes are unsatisfiable sets. Thus, the more constraints we have, the easier it is to
find such a “contradicting” collection of constraints.
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3.6 summary of the results

In this section, we will give a summary of the formal results presented in this chapter.
An overview is given in Table 3.1.

Algorithm Sound? Complete?

Justify Yes (Theorem 3.2) Yes (Theorem 3.2)

IterJustify(·, dmax, Gen) Yes, if Gen is GraphGen

(Theorem 3.9) or an im-
plied instance heuristic
(Theorem 3.11)

Yes for dmax = ∞, if
Gen is GraphGen (The-
orem 3.9) or an implied
instance heuristic (Theo-
rem 3.11)

DerivedIterJustify(·,
dmax, Gen)

Yes, if IterJustify(·, dmax,
Gen) is sound (Theorem
3.13)

Yes, if IterJustify(·, dmax,
Gen) is complete (Theo-
rem 3.13)

Table 3.1: A summary of the formal results presented in this chapter.

First, we recalled the algorithm proposed by Boixel and Endriss (2020), which we
named Justify. As an immediate consequence of Theorem 3.2 (already proved by the
aforementioned authors), this algorithm is sound and complete (and hence correct).

Then, we have introduced IterJustify, a family of justification algorithms that are
parametrised by a generation algorithm Gen and a maximum depth dmax. We have
shown that, if Gen is equal to GraphGen, then for every dmax ∈ N ∪ {∞ } the algo-
rithm IterJustify(·, dmax, Gen) is sound. In particular, if dmax =∞, then it is complete
(and hence correct). Both facts are stated in our main result, Theorem 3.9.

Next, we have shown that we can substitute GraphGen with any implied instance
heuristic and still have a sound (for any dmax) and complete (for dmax =∞) algorithm.
This is stated in Theorem 3.11, which can be seen as a generalisation of Theorem 3.9
(since GraphGen is technically an implied instance heuristic).

Finally, we have shown that adding the derived axioms during the generation pre-
serves soundness and completeness (Theorem 3.13).
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4
I M P L E M E N TAT I O N A N D E X P E R I M E N T S

In this chapter, we propose a concrete implementation of the graph-based algorithm,
used to empirically address the research question. In particular, we will define a vari-
ant of our main justification algorithm, IterJustify, based on the heuristics introduced
in Chapter 3. Then, we present our experimental setup; in brief, we ran our algorithm
on a set of test justification problems to assess its performance. Per our research goal,
we focused on moderately-sized scenarios: 2 to 12 voters and 3 to 4 alternatives. Finally,
we report and discuss our results. We found that, for most of the input problems, we
were able to find at least one justification within minutes. We consider this as a positive
answer to our research question.

4.1 implementation

In this section, we present our implementation of the graph-based algorithm. First, we
are going to recall the high-level structure of our approach. Then, we will describe and
discuss how the instances are generated and detail the specific heuristics used in our
experiments.

4.1.1 Overview

Before diving into the specific details, let us review the high-level structure of our
algorithm. We can identify three main algorithmic ideas behind our approach.

• Graph-based Generation. The main idea behind our algorithm, IterJustify, is to
employ a graph-like view of the axiom instances to generate them procedurally.
We can use this to interleave generation and solving and to generate only a
portion of the whole set of instances.

• Heuristics. The above idea works, in principle, for any corpus of axioms. Indeed,
it only needs a way to generate, given an axiom A and a profile R, the set of
instances A′ /A that mention R. Since we will work with a specific corpus, we
can use this knowledge to our advantage. We are going to propose some axiom-
specific variations to the algorithm IterJustify and the generation algorithm
GraphGen with the aim of improving their performance. In particular, we will
propose some heuristics to reduce the number of generated instances (thus mak-
ing the algorithm faster) and some heuristics to decrease the minimum depth
needed to find some justifications (thus enabling us to stop the execution sooner).
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• SAT solver. Once the instances have been generated and encoded as a group CNF
formula, we delegate the task of finding a group MUS to an external, state-of-
the-art SAT solver. We can thus exploit the performance of such tools without
worrying about the implementation.1

For our experiments, we implemented the algorithm in Python 3.2 To check whether
a formula is satisfiable we use the SAT solver lingeling,3 accessed from Python
through the pylgl library.4 Further, to enumerate the gMUSes of a gCNF formula, we
use MARCO,5 a MUS-enumeration tool capable of handling group CNF formulae (Zhao
and Liffiton, 2016). Our code is publicly available on Github.6

We now present the details of the heuristic algorithm we implemented and tested.
Specifically, we will present multiple variations to be applied to our generation and jus-
tification algorithms, that is, GraphGen and IterJustify. All of these changes will be
combined in our final justification algorithm, HeurJustify. This algorithm is tailored
for the specific corpus of axioms that we used in our experiments.

More precisely, the remainder of this section is divided into four parts. First, we
exemplify how we generate the instances mentioning a given profile during the ex-
ecution of GraphGen. Then, we show how we modify this generation algorithm to
reduce the number of generated instances of some axioms. Next, we show the derived
axioms that we use in our experiments. Finally, we conclude by defining HeurJustify,
a variant of IterJustify based on all the heuristics and variations introduced above.
We discuss briefly its correctness.

Note that the heuristics we will present are specific to the axioms listed in Section 2.2;
however, we stress that new axioms can be added to the corpus without needing to
remove or modify these heuristics.

4.1.2 Generating the Instances

We will now show how to generate, given an axiomA and a profile R, the instancesA′ /
A that mention R. Recall that this is needed in the generation phase of our algorithm
(see Section 3.4.3 for the details). More specifically, given an axiom A, we will show
how to write a function that, given a profile R, returns a gCNF encoding the instances
of A mentioning R. If there is no instance A′ /A such that R ∈ P(A′), then we will
return the empty set.

1 Indeed, recall that the goal of this thesis was not to improve the solving step, as there are already large
communities of researchers working on the performance of SAT solvers. Our goal was to improve the
generation algorithm, while still relying on these powerful reasoning tools.

2 https://www.python.org/
3 http://fmv.jku.at/lingeling/
4 https://pypi.org/project/pylgl/
5 https://sun.iwu.edu/~mliffito/marco/
6 https://github.com/olinarr/AutomatedJustification
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4.1 implementation

We will first describe the general idea and then give some concrete examples. We
adopt two different approaches for intraprofile axioms and interprofile axioms. For
intraprofile axioms, we essentially check whether some property holds over a given
profile. For example, we can check whether, in a given profile R, all alternatives tie
in a majority contest. If this holds, then we return a single instance of Cancellation

stating that all alternatives must win in R. We could also have multiple checks on
the same profile. For example, for the Pareto principle, we will have one check for
every alternative. That is, for every alternative y ∈ X that is Pareto dominated by some
alternative x ∈ X \ {y } in R, we return an instance stating that y must not win in R.

Conversely, for an interprofile axiom A, to generate the instances mentioning a given
profile R, we exhaustively construct all tuples of profiles (R1, . . . , Rk ) such that there
is an instance A′ /A with P(A′) = {R, R1, . . . , Rk }. How to make this construction
depends on how A “links” the different profiles. Once these profiles are constructed,
for each tuple (R1, . . . , Rk ), we generate the corresponding instance(s). Let us now
look at two examples.

Let us start from a simple case: Faithfulness. Recall that this intraprofile axiom
states that, for every R, if R has a single voter, then its top preference should be the
sole winner. Therefore, there is an instance of Faithfulness for every singleton profile
R ∈ R(X)1, stating that F(R) = { top(R) } must hold. Given any profile R, we can
generate the corresponding instances (encoded as gCNF formulae) by following these
steps:

1. If |R| = 1, return FAI(R, top(R));7

2. Otherwise, return ∅.

Here, FAI(R, top(R)) is the gCNF encoding of the instance of Faithfulness men-
tioning profile R (as defined in Section 3.2.2).

Let us now consider a slightly more complex case, Neutrality. Recall that this
axiom states that, given a pair of profiles R and R′, if there is a permutation π : X→ X

such that R = π(R′), then F(R) = π(F(R′)) must hold as well. So then, let us consider
any profile R ∈ R(X)+. Which instances of Neutrality mention R? Clearly, any such
instance constrains R with some profile R′ such that, for some π : X → X, we have
R = π(R′). We can thus generate all these instances by considering all permutations
π : X→ X, and for each of these, generate the instance that mentions R and π(R). More
specifically, given R:

1. Initialise Φ as the empty set;

7 Note that, for simplicity, we are generating directly the gCNF encoding of the instance. Technically, while
generating the graph, one could represent the instances as an abstract object, and then, during the solving
phase, encode them. However, this is an implementation detail and makes no important difference.
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2. For every non-trivial permutation π : X→ X, repeat the following steps:8

(2a) Compute R′ as π(R);

(2b) Add NEU(R, R′, π) to Φ;

3. Return Φ.

Where NEU(R, R′, π) is the gCNF encoding of the instance of Neutrality that
mentions R and R′.

Similar generation algorithms can be written for all axioms in Section 2.2.3. Next, we
will briefly focus on three specific axioms. We will show how we restrict the instances
generated by each of these axioms and discuss how this impacts the correctness of our
algorithm.

4.1.3 Reducing the Number of Generated Instances

In the following, for Reinforcement, Neutrality and Positive Responsiveness, we
will present a way to reduce the number of instances generated for a given profile. For
the latter two axioms, we will implement the idea of implied instance heuristics. We will
show that we can use these alternative approaches in place of the “full” generation
methods and still have a correct algorithm.

Let us introduce some notation first. Recall that GraphGen (as defined in Sec-
tion 3.4.3) is the algorithm we use during the generation step. Let HeurA be an al-
gorithm that, given a profile R, returns (some of) the instances of some axiom A that
mention R. We then define GraphGen + HeurA as the algorithm obtained by using
HeurA to generate the instances of A (instead of the “full” method) when running the
algorithm GraphGen. Let us now look at the three axioms separately.

4.1.3.1 Reinforcement

Let R, R1 and R2 be three profiles such that R = R1 + R2 holds. That is, R can be
partitioned into two subprofiles R1 and R2. In this scenario, we have an instance of
Reinforcement mentioning R, R1 and R2 stating the following:

“If F(R1)∩ F(R2) 6= ∅, then F(R) = F(R1)∩ F(R2) must hold.”

In this case, we say that R is the superprofile of the above instance, and R1 and R2
are the subprofiles. More generally, if for some R and R′ there is a profile R′′ such that
R′ +R′′ = R holds, we say that R is a superprofile of R′.

Recall that, in our generation algorithm (see Section 3.4.3), each time we expand a
profile R we need to generate the instances of A mentioning R (for all axioms A ∈A).

8 By trivial permutation we mean the permutation πid : X → X such that, for every x ∈ X, we have that
πid(x) = x.
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Looking at the case of Reinforcement, some special care is needed. Indeed, a profile
R could be mentioned in an instance of Reinforcement either as a superprofile or as a
subprofile. In other words, we need to generate (1) all instances where R is mentioned
as the superprofile (let us call them super-instances) and (2) all the instances where R

is mentioned as one of the two subprofiles (let us call them sub-instances). Let us look
at the two cases separately.

The first is, at least conceptually, straightforward. Indeed, to generate all super-
instances, it is enough to enumerate all possible partitions of R into two subprofiles
R1 and R2 (where both subprofiles have at least one voter). For each partition, we
generate the corresponding super-instance.

Let us focus on the second case, that is, sub-instances. Let R ∈ R(X)+ be a profile
and let n = |R|. What are the instances that mention R as a subprofile? Clearly, we
have an instance for every R′ ∈ R(X)+ such that |R+ R′| 6 n? holds. Indeed, recall
that our scenario contains all (and only) the profiles up to n? voters. Therefore, we can
add up to n−n? voters to R and obtain a valid superprofile. Thus, for every profile R′

with up to n− n? voters, we have a sub-instance mentioning R and R′ as subprofiles
of R+R′. More precisely, we have a sub-instance for every R′ in the set:

n?−n⋃
i=1

R(X)i

Recall that, as seen in Section 2.1.4, the cardinality of this set is given by the formula:∣∣∣∣∣
n?−n⋃
i=1

R(X)i

∣∣∣∣∣ =
n?−n∑
i=1

(
i+ |X|! − 1

i

)
Clearly, by the above arguments, this formula counts the number of sub-instances

that mention R. Thus, if we actually wanted to generate all sub-instances of a given
profile, we would need to perform a prohibitive number of computations just for one
profile. In the following, we propose a way to compute only a part of the sub-instances
that still guarantees completeness.

Given a profile R with n < n? voters,9 we only generate the following subset of
sub-instances. For any singleton profile R′ ∈ R(X)1, we generate the instance that
constrains R and R′ as subprofiles and R + R′ as the superprofile. In other words,
while generating the sub-instances of R, we consider only the instances obtained by
adding one single ballot to R. Notice that there are exactly |X|! of these instances, as
there are |X|! possible preference orders.

9 This restriction is in place because we only speak about profiles in our voting scenario. Indeed, if R

were to have n? voters, it cannot be mentioned in any sub-instance, as any superprofile of R would
necessarily have more than n? voters. Notice that this holds because we are using a weaker version of
Reinforcement.
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To make things more precise, to generate the instances of Reinforcement of a pro-
file R, we will not use the standard approach we described for Faithfulness and
Neutrality. Instead, we will use the following algorithm, called ReinfHeur:

1. Initialise Φ as the empty set;

2. For every unordered pair of profiles {R1, R2 } such that R = R1 + R2, add
REI(R, R1,R2) to Φ;10

3. If |R| < n?, then, for every singleton profile R′ ∈ R(X)1, add REI(R+R′, R, R′)
to Φ;

4. Return Φ.

Here, REI(R, R1, R2) is the gCNF encoding of the instance of Reinforcement with
superprofile R and subprofiles R1 and R2.

We claim that, by using this approach, we still generate all the instances and profiles
that we would generate with the standard approach (if no bound is placed on the
maximum depth). To see why, consider the following. Suppose that we expand some
profile R (with |R| < n?). Then, we will reach (and expand) all superprofiles of R that
are equal to R plus one single ballot (Step 3). When expanding these profiles, we will
reach all profiles that are equal to R plus two ballots, and so on, by induction, until
every superprofile R is reached. Let us make this claim more precise.

Lemma 4.1. For every justification problem J, the algorithm GraphGen+ReinfHeur(J, ∞)

returns GJ.

Proof. Fix a justification problem J = 〈R?, X?, A〉. Recall that GraphGen(J, ∞) re-
turns GJ (by Corollary 3.6), the graph containing all the profiles connected to R? and
the instances that mention these profiles. Further, fix a profile R. Let us assume that
Reinforcement ∈ A (as otherwise nothing changes). We will show that, if R gets se-
lected for expansion during the execution of GraphGen + ReinfHeur(J, ∞), then all
the instances of Reinforcement that mention R as a subprofile will be generated. This
is enough to show our goal, as the generation of sub-instances is the only difference
between GraphGen and GraphGen + ReinfHeur.

Before doing so, let us introduce some additional notation. For an instance A′ of
Reinforcement, let Rsup(A

′) denote the superprofile of A′. Further, let CR(A
′) =

|Rsup(A
′)| − |R|. Intuitively, CR(A

′) counts how bigger Rsup(A
′) is with respect to R.

Note that for a sub-instance A′ of R it holds that CR(A
′) ∈ { 1, . . . , n? − |R| }. With this,

we will show that every sub-instance A? of R is generated. We will do so by induction
over CR(A

?). As argued above, this is enough to prove our claim.

10 Notice that, by enumerating all unordered pair of subprofiles, we are implicitly stating the following.
For any pair of profiles R1 and R2, we consider the two instances REI(R1 +R2, R1, R2) and REI(R1 +
R2, R2, R1) to be equivalent. Indeed, it is trivial to see that the two instances enforce the same constraint
and mention exactly the same profiles. Therefore, we restrict ourselves to generate only one of the two.
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• Consider any sub-instance A? of R with CR(A
?) = 1. Note that we can reach

Rsup(A
?) by adding one ballot to R. Thus, when expanding R, this instance is

generated in Step 3 of ReinfHeur.

• Suppose that every sub-instance A′ with CR(A
′) = n is generated (with n ∈

{ 1, . . . , n? − |R|− 1 }). Then, consider any sub-instance A? of R with CR(A
?) =

n+1. Furthermore, consider any superprofile R′ of R such that |R′| = |Rsup(A
?)|−

1. Such a profile exists, as for a (large enough) superprofile Rsup(A
?) of R we can

remove any of the extra ballots from Rsup(A
?) and still have a superprofile of

R. Notice that there must be a sub-instance A′ of R with Rsup(A
′) = R′ (since

R′ is a superprofile of R) and CR(A
′) = n (since R′ has one fewer ballot than

Rsup(A
?)). Such instances are generated by hypothesis, and thus R′ is added to

the expansion queue and eventually expanded (since there is no restriction on the
maximum depth). Since |R′| = |Rsup(A

?)|− 1, we can reach Rsup(A
?) by adding

one ballot to R′. Thus, during the expansion of R′ we will generate an instance
mentioning Rsup(A

?) (as per Step 3 of ReinfHeur). Consequently, Rsup(A
?) gets

expanded, and thus A? generated (as per Step 2 of ReinfHeur).

Finally, by induction, every sub-instance A? of R is generated during the execution
of GraphGen + ReinfHeur(J, ∞). This concludes the proof.

At this point, a clarification is in order. This approach clearly changes the “structure”
of the instance graph, that is, it might make some profiles appear later and further
away from the goal profile than they would be in the normal graph. More specifically,
we reduce the breadth of the graph (that is, we reduce the number of edges connected
to a given profile R) but might increase the distance between two profiles (and thus,
the depth). As a result, a profile that could be reached within a certain depth d with
the “full” approach might not be reached at the same depth with this approach, but
only at some depth d′ (where d′ > d).

As such, this design choice clearly has an impact on our results, and on whether
a certain profile (possibly needed for a justification) is generated within a given max-
imum depth. However, there are some advantages to this. First, the computational
improvement enables us to deal with much harder justification problems. Indeed, for
large voting scenarios, generating all the Reinforcement instances is unfeasible. Fur-
ther, we claim that this heuristic is acceptable also in terms of explanatoriness. Let R

be some profile with |R| < n? and R′ be one of its superprofiles. For the sake of the
argument, let us assume that R′ has yet to be generated when R is selected for ex-
pansion. Intuitively, the larger R′ is compared to R, the more distant R′ will be from
R (with respect to ReinfHeur). Since we impose a maximum depth when generating
the graph, this means that we will generate first the explanations that regard smaller
superprofiles. Thus, in a sense, this heuristic prioritises the explanations involving
smaller superprofiles (or, more precisely, it generates this kind of explanations first).
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As we argued when introducing our restricted version of Reinforcement, appealing
to a superprofile might be of limited explanatory power; indeed, this prioritisation is
in line with this argument.

All in all, we consider this trade-off between the depth and the breadth to be justi-
fied.

4.1.3.2 Neutrality

We will now present a heuristic based on the idea of implied instance heuristics to re-
duce the number of instances generated for the axiom of Neutrality. Intuitively, this
heuristic works as follows. Suppose that a given profile R is selected for expansion.
Further, suppose that, somehow, we know that at this point of the execution we have
already generated some instances of Neutrality that mention R. Then, we claim that
we can avoid generating more instances of Neutrality during the expansion of R and
still obtain an implicant graph of the full graph. Let us present the algorithm, and then
discuss our claim. To generate the instances of Neutrality mentioning a profile R, we
will use the following algorithm, called NeuHeur:

1. If an instance A′ of Neutrality such that some R ∈ P(A′) has been already
generated,11 return ∅;

2. Otherwise, return all instances of Neutrality mentioning R (see Section 4.1.2).

Recall that, by Corollary 3.6, for every justification problem J = 〈R?, X?, A〉, the
algorithm GraphGen(J, ∞) returns the full graph GJ (the graph containing the goal
profile, all of its connected profiles and the instances which mention them). We will
now show that, if we use this alternative generation approach, we generate an impli-
cant graph of GJ with respect to A (see Definition 3.4). Intuitively, this holds because
the Neutrality connections (in the instance graph sense) are transitive. Suppose that
there are two instances A1→2 and A2→3 of Neutrality connecting R1 to R2 and R2 to
R3, respectively. Then, there is an instance A1→3 of Neutrality connecting R1 to R3.
This holds because if we can rename R1 to R2 and R2 to R3, then we can rename R1 to
R3 (where, by “renaming”, we mean a renaming of the alternatives). Furthermore, as
we will show, A1→2 and A2→3 imply A1→3. Indeed, let us make this statement more
precise.

Lemma 4.2. Let J = 〈R?, X?, A〉 be a justification problem. Then, the algorithm GraphGen+

NeuHeur(J, ∞) returns an implicant graph of GJ with respect to A.

Proof. Recall that, given any graph G, an implicant graph G− of G with respect to A

must have the same profiles as G and, for every axiom A ∈ A and instance A′ /A in

11 Technically, the implementation of GraphGen we presented does not allow to make this check. We leave
out the details of how to achieve this as a matter of implementation.
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G, there must be a set of instances A′ /A that together imply A′ (called an implicant
set of A′ for A). We need to show that, for every justification problem J = 〈R?, X?, A〉,
GraphGen + NeuHeur(J, ∞) returns an implicant graph of GJ with respect to A.

To this end, fix a justification problem J = 〈R?, X?, A〉. Recall that GraphGen(J, ∞)

returns GJ. Let us assume that Neutrality ∈ A (as otherwise nothing changes). We
will show that, if a profile R gets selected for expansion during the execution of
GraphGen + NeuHeur(J, ∞), then for every instance A′ of Neutrality mentioning
R we generate an implicant set of A′ and generate the profile connected to R through
A′. This is enough to show our goal, as the generation of Neutrality is the only differ-
ence between GraphGen and GraphGen+NeuHeur. In other words, for every other
axiom in A, all instances are generated.

To do so, fix a profile R1 and suppose it is selected for expansion. Then, if no instance
of Neutrality mentioning R1 has been generated yet, surely all of the instances will
be generated (and thus all of its connected profiles reached). Therefore, in this case,
we are done. So, let us suppose that, when expanding a profile R2, an instance of
Neutrality that mentions R1 has been generated. Let this instance be A2→1, and
suppose it refers to a permutation π2→1 such that π2→1(R2) = R1. Notice that, in this
case, all the instances mentioning R2 must have been generated, as NeuHeur returns
either all or none of the instances mentioning a profile.

Let A1→3 be some instance (distinct from A2→1) mentioning R1 and another profile
R3 such that, for a permutation π1→3 : X → X, π1→3(R1) = R3 holds. We will show
that an implicant set of A1→3 has been generated and R3 has been reached. Again,
this is enough to prove our claim, as no restriction has been placed over A1→3. Thus
the same must hold in general.

First of all, notice that R2 (the profile that we expanded) and R3 are connected
through Neutrality. Indeed, consider the permutation π2→3 = π1→3 ◦π2→1. Trivially,
by construction, π2→3(R2) = R3. Thus, there is an instance A2→3 mentioning R2
and R3. This instance has been generated (as we generated all instances mentioning
R2). Therefore, R3 has been reached. (Figure 4.1 gives a visual representation of this
situation.)

R1 R3

R2

A1→3

A2→1
A2→3

Figure 4.1: If we already generated the Neutrality-connections between R1 and R2 and be-
tween R2 and R3, we can avoid generating the instance between R1 and R3, as it is
implied by the two aforementioned instances.
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Furthermore, we can show that A2→1 and A2→3 (the instances that we generated)
imply A1→3 (our target instance). Suppose F satisfies A2→1 and A2→3. By A2→1, we
have the following:

π2→1(F(R2)) = F(R1) (4.1)

Moreover, by A2→3, we have that:

π2→3(F(R2)) = F(R3) (4.2)

But since π2→3 = π1→3 ◦ π2→1, we also have that:

π2→3(F(R2)) = π1→3(π2→1(F(R2))) (4.3)

Notice that, in Equation 4.3, we can substitute both π2→1(F(R2)) with F(R1) and
π2→3(F(R2)) with F(R3). We can do so by virtue of the identities expressed in Equa-
tions 4.1 and 4.2, respectively. Thus, we finally have that:

F(R3) = π1→3(F(R1))

Recall that A1→3 connects R1 to R3, where π1→3(R1) = R3. Thus, the above means
that F satisfies A1→3. Therefore, set {A2→1, A2→3 } implies A1→3, our target instance.
This concludes the proof.

The advantage of this is purely in terms of computational resources. Indeed, in
general, for a profile R, there are |X|! many instances of Neutrality mentioning R.
This is because there are |X|! permutations of the alternatives, and thus, |X|! possible
profiles that are equal to R up to a renaming of the alternatives. By using NeuHeur in
place of the full implementation, we avoid generating all of these instances for some
profiles. To give a rough estimation, if we generate the instances for R, then we can
avoid doing it for its connected profiles, which are, again |X|!.

4.1.3.3 Positive Responsiveness

We apply a similar approach on the Positive Responsiveness axiom, again based on
the notion of implied instances. Recall that this axiom states that, given two profiles
R and R+, if R+ can be obtained from R by raising the support of an alternative x?

in some preference order, then x? ∈ F(R) implies F(R) = { x? }. More intuitively, this
axiom prescribes the following. If x is a (possibly tied) winner in R and we increase its
support (that is, some voter raises x in its preference order), then x must become the
sole winner. In our implementation, we will generate only the instances that mention
a profile R+ where one single voter has raised the support of a single alternative by
one single “step” (i.e., increased its rank by one) from R. We will call such instances
single-step instances. To clarify, we will give an example.

66



4.1 implementation

Example 4.1. Consider the profile R:

#1 : b �1 a �1 c
#1 : c �2 b �2 a

Here, we named the two preference orders to clarify the upcoming presentation. By
raising the support of a in both preference orders, we can obtain the profile R+:

#1 : a �3 b �3 c
#1 : a �4 c �4 b

Clearly, there is an instance of Positive Responsiveness connecting R and R+ (let
this instance be called A′). However, consider the profiles R1 and R2, defined, respec-
tively, as:

#1 : a �3 b �3 c
#1 : c �2 b �2 a

#1 : a �3 b �3 c
#1 : c �5 a �5 b

Note that we can reach R1 from R by raising the support of a in preference order
�1 (obtaining �3). Similarly, we can reach R2 from R1 (by raising a in �2, obtaining
�5), and R+ from R2 (raising a in �5, obtaining �4). Moreover, notice that for each
of these pairs of profiles, there is a single-step instance of Positive Responsiveness.
Finally, note that the conjunction of these single-step instances implies A′. A visual
representation of this scenario is given in Figure 4.2. 4

R R1 R2 R+

Figure 4.2: If two profiles are linked by Positive Responsiveness, then we can connect them
with a sequence of single-step instances. This figure represents the situation de-
scribed in Example 4.1, and each arrow is an instance of Positive Responsiveness.
Here, the direction of the arrow represents the direction of the increase in support.
The solid lines represent the single-step instances, whereas the dashed line repre-
sents an instance that is not a single-step instance.

Therefore, to generate the instances mentioning a given profile R, we will use the
following algorithm, called PosHeur:

1. Initialise Φ as the empty set;
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2. For every alternative x ∈ X and for every preference order � ∈ R, repeat the
following steps:

(2a) Compute R+ from R by increasing the rank of x in � of one position. If this
is not possible, jump to Step (2c);

(2b) Add POS(R, R+, x) to Φ;12

(2c) Compute R− from R by decreasing the rank of x in � of one position. If this
is not possible, skip (do not execute) Step (2d);

(2d) Add POS(R−, R, x) to Φ;

3. Return Φ.

As we did for the previous heuristic, we will now show that, if we use PosHeur,
we generate an implicant graph of the full graph GJ. Let us first give an intuitive ex-
planation. Suppose that a profile R is selected for expansion. With this approach, all
the profiles that can be reached from R with a single-step increase in the support of
some alternative will be generated (Step (2a)), and thus selected for expansion. How-
ever, during the expansion of these profiles, we will reach all the profiles that can be
reached with two single-step increases from R. This goes on, until we reach, by induc-
tion, every profile R+ that can be reached from R in this way. Moreover, the instances
resulting from this chain imply the instance between R and R+ (this holds because, in
a sense, the constraints prescribed by Positive Responsiveness are transitive). Finally,
notice that this holds for the other direction as well. If R can be reached by raising
the support of some alternative from R− (by any number of ranks), we will eventu-
ally generate the instance mentioning R and R− (per Step (2c)). Let us now prove our
claim.

Lemma 4.3. Let J = 〈R?, X?, A〉 be a justification problem. Then, the algorithm GraphGen+

PosHeur(J, ∞) returns an implicant graph of GJ with respect to A.

Proof. Suppose R is selected for expansion. Let A? be an instance of Positive Respon-
siveness that mentions R and some profile R+. We will show that by using PosHeur

we will generate an implicant set of A? and reach R+. As argued in the proof of the
previous lemma, this is enough to show our goal. We will assume that R+ can be ob-
tained from R by raising the support of some x? (by any number of steps); the case
where the opposite holds is completely symmetrical.

12 For more details on the definition of this formula, see Section 3.2.2. Note that, in this axiom, the order
of the profiles matter. Indeed, what we are stating here is that R+ can be obtained from R by raising the
support of x, not the opposite.
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Before proving our claim, let us define some additional notation. Let IR(R+) (as
in “increase”) be the number of single-step increases in the support of x? needed to
obtain R+ from R. This can be defined as:

IR(R
+) =

[ ∑
�∈R+

b(�, x?)

]
−

[∑
�∈R

b(�, x?)

]

Here, b(�, x?) is the Borda score of x? in �. Recall that the Borda score of x? in
� counts the number of alternatives y ∈ X \ { x? } such that x? � y. Thus, if b(�, x?)
increases of 1, we have increased the support of x? of one step. Notice that IR(R+) > 1,
since we assume that R+ can be reached from R by raising the support of x?.

With this, let us prove that by using PosHeur we will generate an implicant set of
A? and reach R+. We will do so by induction over IR(R+).

• Suppose IR(R+) = 1. Then, there is a single-step increase connecting R and R+.
Our claim trivially holds in this case.

• Let A′ be an instance of Positive Responsiveness mentioning R and some R′.
Further, let IR(R′) = n (where n > 1). Suppose that for any such instance A′,
the claim holds. That is, R′ is reached and an implicant set A′ of A′ is generated.
Consider an instance A? of Positive Responsiveness mentioning R and some
R? with IR(R?) = n + 1. Since IR(R?) = IR(R

′) + 1, R′ and R? are connected
by a single-step instance. Let this instance be As (as in “single”). During the
expansion of R′ (which will happen, by hypothesis), we will generate As. Thus,
we reach R?.

Further, A′ ∪ {As } implies A?. Suppose F ∈ I(A′ ∪ {As }). Then, if x? ∈ F(R),
F(R′) = { x? }. This holds because A′ entails A′ by hypothesis, and A′ prescribes
that if x? wins in R then x? is the sole winner in R′. Further, F(R?) = { x? },
because As prescribes that if x? wins in R′ then x? is the sole winner in R?. Thus,
we have shown that x? ∈ F(R) implies F(R) = { x? }; but this means that F satisfies
A? as well. This concludes the inductive step.

Thus, by induction, R+ is reached and an implicant set of A? is generated. This
concludes the proof.

Once again, let us comment on this heuristic. Similarly to ReinfHeur, PosHeur

changes the structure of the generated graph; some profiles that would normally be
generated at a given depth d might only be reached at some depth d′ (with d′ > d).
As we discussed in the previous chapter, most of these heuristics imply some sort of
compromise. In this case, we claim that for the scenarios considered, this heuristic is
generally beneficial. Indeed, generating all the instances of Positive Responsiveness

would make this problem much harder computationally. By using this approach, we
can deal with larger scenarios.
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Still, by doing so, we might lose some interesting profiles (within a certain maximum
depth). Again, this is a matter of compromise. Still, we stress that some of the heuristics
presented in the rest of this chapter, based on the idea of derived axioms, will partly
address this. Indeed, these heuristics capture some common patterns of explanation
involving Positive Responsiveness. In other words, although we might lose some
interesting profiles, we are still able to find some of the explanations that use these
ungenerated profiles.

4.1.3.4 Heuristic Generation Algorithm

In this section, we will show that we can use the three heuristics introduced above, and
still retain a correct justification algorithm. So then, let GraphGenH (as in “heuristic”)
be the graph generation algorithm GraphGen that uses the above heuristics to gener-
ate the instances of Reinforcement, Neutrality and Positive Responsiveness. Or,
with a slight abuse of notation:

GraphGenH = GraphGen + ReinfHeur + NeuHeur + PosHeur

We will show that we can use this algorithm in place of GraphGen during the
generation phase of IterJustify and have a correct algorithm. To do so, we will show
that GraphGenH is an implied instance heuristic (Definition 3.5).

Proposition 4.4. For every dmax ∈N∪ {∞ }, IterJustify(·, dmax, GraphGenH) is sound.
Furthermore, IterJustify(·, ∞, GraphGenH) is correct.

Proof. We will show that GraphGenH is an implied instance heuristic (Definition 3.5).
The claim will then follow directly from Theorem 3.11. To do so, we need to show that
the two conditions of Definition 3.5 hold. We will prove that these hold separately in
the following.

(i) Let J be an arbitrary justification problem. This condition states that, for ev-
ery d ∈ N ∪ {∞ }, GraphGenH(J, d) returns a subgraph of GJ. Clearly, all of
the three heuristics only restrict the instances you can generate. Thus, since
GraphGen generates only subgraphs of GJ, the three heuristics cannot possi-
bly add instances and profiles that are not in this graph. Therefore, for every
d ∈N∪ {∞ }, GraphGenH(J, d) returns a subgraph of GJ. Thus, the first condi-
tion holds.

(ii) Again, fix a justification problem J = 〈R?, X?, A〉. This condition states that there
must be a d? ∈ N such that GraphGenH(J, d?) returns an implicant graph of
GJ for A. Moreover, for every distinct d, d′ ∈ { 0, . . . , d? }, the graph returned by
GraphGenH(J, d) is not equal to the graph returned by GraphGenH(J, d′).

Recall that, in GraphGen (and thus in GraphGenH), parameter dmax controls the
maximum depth of the graph exploration. Starting from dmax = 0, we can keep
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increasing dmax until we reach a value where we have expanded all the profiles
that are connected to R. Let this value be d?. Clearly, all graphs we generate
before reaching d? are distinct from each other, as every time we increase dmax

we expand more profiles. Thus, if we prove that GraphGenH(J, d?) returns an
implicant graph of GJ with respect to A, we are done.

Trivially, the graph returned by GraphGenH(J, d?) is equal to the graph re-
turned by GraphGenH(J, ∞), as in both cases all the profiles connected to R?

have been expanded. But we know that, for each of the three heuristics indepen-
dently, when we add them to GraphGen(J, ∞) we return an implicant graph
of GJ with respect to A. This was proved in Lemmas 4.1, 4.2 and 4.3.13 Clearly,
this must still hold if we use the three heuristics together, as each heuristic only
changes the way a single axiom is implemented, and the arguments we used to
prove these lemmas do not depend on the other axioms in the corpus. Therefore,
GraphGenH(J, ∞) returns an implicant graph of GJ with respect to A.

This concludes the proof.

4.1.4 Derived Axioms

Now, we describe some derived axioms, as introduced in Section 3.5.2. Intuitively,
these are intraprofile axioms that encapsulate common patterns of explanation that
have been observed across different justification problems. The idea is that, by gener-
ating these common patterns early on during the search, one can find a justification
that would normally require a certain depth without expanding the graph completely
up to that depth.

4.1.4.1 Equivalence of Symmetric Alternatives

Consider the profile R:

#1 : a � b � c
#1 : b � c � a
#1 : c � a � b

As we already show in Example 2.2, any F that satisfies Neutrality must have that
F(R) = {a, b, c}.14 Intuitively, this holds because the three alternatives are, in some
sense, symmetric with respect to this profile. In other words, they all appear at any
given rank an equal amount of times.

13 In the case of ReinfHeur, we actually proved a stronger claim, but this is not a problem here: GJ is
trivially an implicant graph of itself.

14 Note that, were we to consider non-anonymous profiles (as Boixel and Endriss (2020) did), then to justify
the same outcome we would also need the axiom of Anonymity.
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In general, given a profile R, if there is a permutation π of the alternatives such
that R = π(R), Neutrality prescribes that an alternative x ∈ X wins in R if and
only if π(x) wins as well: x ∈ F(R) ⇐⇒ π(x) ∈ F(R) (as R = π(R)). Clearly, this
argument can be repeated further: x ∈ F(R) ⇐⇒ π(x) ∈ F(R) ⇐⇒ π(π(x)) ∈ F(R)
(as R = π(R) = π(π(R))). We can generalise this idea even more. Let πk denote k
applications of π:

πk(x) = π ◦ · · · ◦ π︸ ︷︷ ︸
k times

(x)

Then, for every k ∈ N, x ∈ F(R) ⇐⇒ πk(x) ∈ F(R). Moreover, let π+ denote the
transitive closure of π:

π+ = { (x, y) ∈ X2 | y = πk(x), for some k ∈N }

Note that this is an equivalence relation over X.15 Let [x]π be the equivalence class of
x in the partitioning induced by π+. Intuitively, this is the set of alternatives such that
any y ∈ [x]π can be “reached” from x by repeatedly applying π. Thus, for every R, if a
permutation of the alternative π such that R = π(R) exists, then for every alternative
x ∈ X either [x]π ⊆ F(R) or F(R)∩ [x]π = ∅ must hold. Indeed, suppose x ∈ F(R). Then,
by Neutrality, every y ∈ [x]π must win as well. This is because any such y can be
obtained by repeatedly applying π over x. As argued above, this implies that y ∈ F(R).

Later, we will formalise this statement into a derived axiom of Neutrality. For now,
to clarify the above discussion, we will present another example.

Example 4.2. Consider the profile R:

#1 : a � b � c
#1 : b � a � c

Here, we have two equivalence classes: {a, b } and { c }. For the latter, we have that
c either wins or does not. Clearly, that is trivially true for every F, regardless of this
axiom. However, for the first class, we have that either both a and b should win, or
both should lose. Thus, either {a, b } ⊆ F(R) or {a, b }∩ F(R) = ∅ must hold. 4

Let us now introduce the derived axiom, called Symmetry:

“For every profile R, if there is a permutation π : X→ X such that R = π(R), then
for all x ∈ X either [x]π ⊆ F(R) or F(R)∩ [x]π = ∅ hold.”

As argued above, Neutrality implies this axiom. In particular, given an instance
A′ of Symmetry, it is easy to exhibit the instance of Neutrality that implies it. For

15 To see why, consider the directed graph 〈X, π〉. Notice that this graph is composed of a set of disjoint
cycles. This holds because every node must have exactly one in-going edge and one out-going edge (by
virtue of π being a permutation). Trivially, each cycle corresponds to an equivalence class induced by π+.
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example, ifA′ regards a profile R and a permutation π : X→ X, then the corresponding
instance is NEU(R, R, π).

We will now give an algorithm to compute the set of instances of Symmetry men-
tioning a profile R. Intuitively, it works as follows. Let �? be any preference order in
R. For every � ∈ R such that � 6= �?, we will construct the permutation π : X → X

such that π(�?) = �. If π(R) = R, then we will construct an instance of Symmetry

regarding R and π.16 With this approach we find all interesting permutations, as any
permutation π such that π(R) = R must map �? into some other preference order of
R. More precisely, we run the following algorithm:

1. Initialise Φ as ∅;

2. Choose a preference order �? ∈ R;

3. For each preference order � ∈ R such that � 6= �? and R(�) = R(�?):17

(3a) Let π be a permutation such that � = π(�′);
(3b) If R 6= π(R), continue the execution of Step 3;

(3c) Else, compute the equivalence classes by finding the connected components
on the graph 〈X, π 〉;18

(3d) Add SYM(R, π) to Φ;

4. Return Φ.

Here, SYM(R, π) is the gCNF encoding of an instance of Symmetry regarding profile
R and permutation π.

4.1.4.2 Quasi-Tied Winners and Quasi-Tied Losers

In this section, we will present two derived axioms of Positive Responsiveness and
Cancellation.

To introduce the first, let us start with an example. Consider profile R:

#1 : a � b � c
#1 : c � a � b

Which alternative should win? To answer this, consider the profile R′ = {a � b �
c, c � b � a }. By Cancellation, we must have that F(R′) = {a, b, c }. Further, notice

16 Note that, technically, we should also generate the permutation π′ such that �?= π′(�). However, an
instance regarding this permutation would place the same constraint as the instance regarding the per-
mutation π. Thus, we do not generate such instances.

17 The equality of multiplicities is checked to avoid useless comparisons:�? must be mapped to a preference
order of R which has been expressed by the same number of voters.

18 Recall that, as we briefly mentioned in a note above, each equivalence class corresponds to the node of
some disjoint cycle in 〈X, π 〉.
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that we can obtain R from R′ by raising the support of a. Therefore, by Positive

Responsiveness, we have that F(R) = {a }. In this case, we say that R has a quasi-tied
winner, namely, a. More generally, we can define the following derived axiom, called
Quasi-Tied Winners:

“For every profile R, if R can be obtained from some Cancellation profile by
raising the support an alternative x?, then F(R) = { x? }.”

It is trivial to see that Positive Responsiveness and Cancellation imply this ax-
iom. In particular, given an instance A′ of Quasi-Tied Winners, we can construct the
instances of Positive Responsiveness and Cancellation that imply it. For example,
if A′ regards a profile R which can be obtained from a Cancellation profile R′ by rais-
ing the support of x?, then these instances are CAN(R′) and POS(R′, R, x?) (where
CAN(R′) is the instance of Cancellation regarding R′).19

We can get a derived axiom in the other direction as well. Indeed, consider the
profile R:

#1 : a � b � c
#1 : b � a � c

We can establish that c cannot win in R as follows. Consider profile R′ = {a � b �
c, c � b � a }, which can be obtained by raising the support of c from R. By Cancella-
tion, F(R′) = {a, b, c }. So then, suppose c ∈ F(R). This would mean that F(R′) = { c }

(by Positive Responsiveness), which contradicts Cancellation. Thus, c 6∈ F(R). Sim-
ilarly as before, we say that c is a quasi-tied loser of R. Again, we define the axiom
Quasi-Tied Losers, derived from Positive Responsiveness and Cancellation:

“For every profile R, if by raising the support of x? in R we obtain a Cancellation
profile, then x? 6∈ F(R).”

We stress that these two derived axioms can be checked on a profile R? quickly,
that is, without exhaustively lowering (or raising) all alternatives until a Cancellation
profile is found. We exemplify how to do so in the case of the first one, as the second
one is completely symmetric in the other direction.

To generate the instances of Quasi-Tied Winners that mention a profile R, we can
use the following algorithm:

1. Check whether the two following conditions hold for some x?:

• For any y, z ∈ X \ { x? }, we must have that R(y � z) = R(z � y).
• For any y ∈ X \ { x? }, we must have that R(x? � y) > R(y � x?), and this

inequality is strict for at least one y.

19 From R, we can obtain profile the Cancellation R′ by exhaustively lowering the support of x? in all
possible ways. Note that these instances can be constructed after the search for the justifications is finished.
Hence, this does not slow down the algorithm significantly.
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2. If the two above conditions hold for x?, exhaustively lower the support of x? in
R in all possible ways;

3. If during this process you find a profile R′ that is a Cancellation profile, then
return {WIN(R, x?) }. Otherwise, return ∅.

The first two conditions can be checked quickly to find whether a candidate x?

exists for R. Indeed, they are necessary but not sufficient conditions. To see why they
are necessary, suppose that R′ is a Cancellation profile and that R can be obtained by
raising the support of x? in R′. The first condition states that all alternatives (except for
x?) must tie in a majority comparison. This must hold, as in R′ every alternative must
tie in such a comparison. Since we can only raise the support of x?, this must still hold
for every other alternative in R. Furthermore, the second condition states that x? must
win in at least one majority contest, and never lose any. Indeed, in R′, x? ties with
every other alternative: if we raise its support, then surely in at least one comparison
x? must become a winner. Further, we do not lower its support, thus it cannot lose in
any majority contest.

However, the two conditions are not sufficient. For example, consider the following
profile:

#1 : a � c � d � b
#1 : a � d � c � b
#1 : b � c � a � d
#1 : b � d � a � c
#1 : c � b � d � a
#1 : d � b � c � a

In this profile, the two conditions hold for b. Indeed, b wins a majority contest
against a, and ties against c and d. Furthermore, every other pair of alternatives ties
in a majority contest. However, if we exhaustively try to find a Cancellation profile
by lowering the support of b, we find that no such profile exists. This can be checked
computationally.

Therefore, the last step confirms whether R can be obtained by raising x? from
some Cancellation profile. It does so by exhaustively searching for such a profile. This
is expensive computationally, but it will only be executed on the small portion of the
profiles that satisfy the two conditions. In other words, the conditions act as a “filter”.
On average, we found that this does not slow down the algorithm significantly.

Finally, note that the algorithm either returns one instance or none. This is not a
problem, as there cannot be two distinct instances of this axiom that mention the
same profile. If that were the case, with this axiom, we could justify two different
outcomes for some R. That, in turn, would mean that we could justify two different
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outcomes with corpus {Positive Responsiveness, Cancellation }. But this is impos-
sible: by Corollary 3.1, we cannot justify two different outcomes with a non-trivial
corpus. Clearly, this is the case for this corpus: at least the Borda rule satisfies both
axioms. Thus, we can only have one instance per profile.

4.1.5 Putting It All Together: The Heuristic Algorithm

We will now summarise all heuristics presented above into one single algorithm.
By Proposition 4.4, we know that the graph generation algorithm GraphGenH can

be used to perform the generation step of our main justification algorithm, IterJus-
tify, and that this guarantees correctness. Further, recall that DerivedIterJustify is
an extension of IterJustify designed to incorporate derived axioms. More specifically,
this variant accepts a set of axioms Ad as a parameter. If these are implied by the ax-
ioms in the corpus of the input justification problem, then DerivedIterJustify uses the
axioms in this set to aid the search for justifications. By Theorem 3.13, this approach
preserves correctness. Then, let A?

d be:

A?
d = { Symmetry, Quasi-Tied Winners, Quasi-Tied Losers }

Putting together all the heuristics we introduced so far, we define the following
algorithm:

HeurJustify(J, dmax) = DerivedIterJustify(J, dmax, GraphGenH, A?
d)

In our experiments, we will use HeurJustify. As a trivial consequence of the above
discussion, we can state the following.

Proposition 4.5. For every dmax ∈N∪ {∞ }, the algorithm HeurJustify(·, dmax) is sound.
Moreover, HeurJustify(·, ∞) is correct.

Proof. This is an immediate consequence of Theorem 3.13 and Proposition 4.4.

4.2 experiments

The purpose of this section is to directly address the research question, that is: is
it possible to design an algorithm for the problem of computing justifications for collective
decisions that achieves good performance in practice? To achieve this, we run our algorithm
on several moderately-sized test cases, and check whether at least one justification can
be found in a reasonable amount of time. To achieve this, we stop the execution of
HeurJustify as soon as one justification is found.

We will first present the test data, then outline the experimental setup; finally, we
will present and discuss the results.
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4.2.1 Test Data

We test our algorithm on election profiles of different sizes. Due to limitations of a
computational nature, we focus on the case of three and four alternatives. Further, we
test our algorithm on profiles ranging from two to twelve voters. We argue that such
moderately-sized scenarios are still of interest for this approach, as the notion of jus-
tification we use is suitable for small-scale collective decisions. Intuitively, with this
approach, we will obtain “small” justifications (in terms of the size of the explanation)
that can be discussed within a group of agents. Given that this notion is grounded
in the concept of axiom instances, the explanations retrieved with our approach will
consist of concrete arguments that mention the specific entities involved in the elec-
tion: alternatives, profiles, and preference orders. For large-scale elections, with a vast
amount of concrete objects involved, the resulting explanations might be too complex
to be human-readable.

We will now present the test data. For the smaller scenarios we consider, it is possible
to test the algorithm exhaustively on all profiles. For larger scenarios, this is no longer
feasible, and thus a sampling of the profiles is necessary. The approaches are detailed
in the following.

exhaustive generation. In this approach, we exhaustively test our algorithm
on all profiles with n voters and m alternatives. Similarly to Boixel and Endriss (2020),
we can restrict our search to a subset of the whole space, due to the symmetries within
the set of all profiles. Indeed, once we run a test on a profile R, we can avoid testing all
profiles R′ that are equal to R up to some permutation of the alternatives. For example,
consider profile R:

#1 : a � b � c
#1 : b � c � a

Further, consider profile R′:

#1 : b � c � a
#1 : c � a � b

Let π be a permutation of the alternatives such that π(a) = b, π(b) = c and π(c) = a.
Notice that π(R) = R′. If we obtain a justification 〈AN, AE〉 for some outcome X? for R,
we can “translate” such a justification into a justification for π(X?) in R′ by applying
the same permutation to AE. To do so, we can apply π to every object mentioned
in every instance A′ ∈ AE.20 Notice that we can do this regardless of whether we
include Neutrality in our corpus. We can thus partition the space of profiles into a

20 For example, an instance of Cancellation that mentions a profile R can be “translated” into an instance
that mentions a profile π(R) (for a permutation of the alternatives π).
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set of equivalence classes induced by these symmetries, and limit our tests to only one
profile per class.

Clearly, this approach gives a full account of the performance of the algorithm in the
given scenario. However, as stated earlier, when the number of voters and alternatives
grows, the number of profiles (even up to our symmetry breaking approach) dras-
tically increases (see Section 2.1.4 for some concrete numbers). Therefore, for larger
voting scenarios, we generate only a portion of the full set of profiles, using the follow-
ing approaches.

random generation. In this approach, profiles are randomly generated. To this
end, one has to choose a statistical culture (a term originally introduced by Garman
and Kamien (1968)). Essentially, a statistical culture is a probability distribution over
the elections (that is, profiles). Perhaps the simplest and most commonly used one is
the Impartial Culture (IC), which corresponds to a uniform distribution over all profiles
(originally named like this by Garman and Kamien (1968)). Although natural, this
approach might be too simplistic to capture real-world elections. Intuitively, IC fails
to capture that the preferences of real-world agents might be correlated: for example,
there might exist similarities between the preferences of voters that belong to the same
party. For more rigorous accounts on the limitations of IC, see the book by Regenwetter
et al. (2006) or the paper by Szufa et al. (2020). Still, due to its simple nature and its
widespread use, we employ IC as a baseline in our experiments.

An alternative statistical culture, which tries to model explicitly these similarities,
is the Polya-Eggenberger (PE) urn model (Berg, 1985; Szufa et al., 2020). This model
is parametrised by the contagion rate α (which controls how much the preferences are
correlated) and can be sampled as follows. Start with an urn containing one copy of
each of the |X|! possible preferences in L(X). To draw a vote, we sample a preference
from this urn and then return it to the urn together with α|X|! additional copies. We
keep sampling until we reach the desired amount of votes. Notice that, in particular,
for α = 0, PE is equal to IC, whereas for α =∞ PE only generates unanimous profiles
(that is, profiles where all voters share the same preference order).

Szufa et al. (2020) propose a framework to study the properties of the elections
generated by different statistical cultures. They propose a distance measure between
elections, which is used to understand how diverse the profiles generated by a cer-
tain culture are. Within this framework, PE seems to give good results in terms of the
diversity of generated elections, and thus we employ it to generate our data. Further-
more, we adopt the values of α as used by the aforementioned authors, and generate
the same number of profiles. More specifically, we adopt the following values of α:
{ 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 }. For each α, we generate 30 elections, for a total of 180.
For consistency with the PE model, we generate 180 profiles using IC as well.
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real-world data . In this approach, profiles are generated using real-world elec-
tion data from Preflib.21 Preflib (Mattei and Walsh, 2013) is a “reference library of
preference data”, which contains over 3000 datasets regarding elections and prefer-
ences. Since this work is focused on practical usefulness, this test data seems particu-
larly interesting. Indeed, if the algorithm turns out to be useful on Preflib data, this
would be strong evidence for its real-world applicability.

We consider the dataset of linear orders from Preflib.22 A profile is encoded as
a file consisting of a sequence of complete preference orders, where each preference
order is paired with the number of voters who expressed it. This is, indeed, very close
to our representation of profiles as multisets.

Still, most of the data from Preflib regards elections with large electorates, which
are currently out of the scope of our algorithm. Thus, we consider the following ap-
proach to generate small profiles from Preflib data. Given a real-world profile R?

with n voters, we can generate a profile R with |R| < n by sampling preferences orders
from R?. To do so, we assign to each preference order � ∈ R? a probability of R?(�)

n

(recall that R?(�) is the number of voters in R? who express preference �). That is, we
sample preference orders in a way that is proportionate to the fraction of voters who
expressed these orders. We claim that this is a reasonably faithful way to restrict the
size of Preflib-generated profiles, as, on expectation, it preserves the distribution of
the preferences. Note that other authors have employed similar approaches to generate
small profiles from Preflib data (for example, see the work of Hashemi and Endriss
(2014)).

To generate our data, we selected 30 random files from those available on Preflib

with the correct number of alternatives, depending on the experiment. From each of
these, we sampled 6 profiles, for a total of 180.

single-peaked generation. In this approach, we randomly generate profiles
with a certain structure. A well-known idea in Social Choice Theory is the idea of do-
main restrictions. A domain restriction is, as the name goes, a restriction on the set of
allowed profiles (that is, the domain over which SCFs are defined). This approach is
used to study whether, by focusing on a certain subset of the profiles, some negative
results can be mitigated (such as impossibility theorems). In other words, researchers
investigate whether these negative results still hold in the restricted setting. The oldest
(and perhaps most famous) domain restriction is the case of single-peaked profiles, in-
troduced by Black (1948). In this case, we restrict our attention to profiles in which the
alternatives can be ordered in a way such that the liking of voters first increases and
then decreases. In other words, the alternatives can be positioned along a dimension
such that the preferences have just one peak. More formally, a profile R is single-
peaked if there is a dimension � such that, for every � ∈ R, we have that x � y

21 https://www.preflib.org/
22 https://www.preflib.org/data/format.php#soc
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holds whenever x is between y and top(�) (according to �). For example, consider
the following profile:

#1 : d � c � b � a
#1 : c � b � a � d
#1 : c � d � b � a
#1 : b � a � c � d

This profile is single-peaked with respect to dimension a � b � c � d (see Fig-
ure 4.3 for a visual representation).

This restriction is a natural assumption for some electoral problems: for instance,
when voting for the legal drinking age, or when the candidates are distributed along
the left–right political spectrum. For example, it has been successfully applied as a bar-
rier against strategic manipulation in voting (Moulin, 1980).23 Intuitively, this means
that by focusing on this class of profiles, some negative results concerning strategic
voting can be mitigated.

Figure 4.3: A visual representation of an example single-peaked profile, shown in the upper
right corner. Each line (corresponding to the preference order of the same colour)
represents the liking of a given voter for the alternatives. The horizontal axis repre-
sents the ordered dimension of the alternatives, whereas the vertical axis represents
the appreciation (plotted as the Borda score). Notice the unique peak for each line.

We test our algorithm with this setting to see whether it leads to better results than
the general case. To generate the data, we adopt the algorithm proposed by Walsh
(2015) to sample 180 single-peaked profiles uniformly at random. We can see this

23 Briefly, strategic manipulation refers to a situation where voters misrepresent their true preferences in
order to obtain better results in the election. Refer to the chapter by Conitzer and Walsh (2016) for an
introduction on this problem and how it can be addressed.
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approach as a restriction of IC over single-peaked profiles. Other statistical cultures for
single-peaked profiles have been suggested; for instance, by Conitzer (2009). However,
as Walsh notes in the aforementioned work, this model is much more likely to return
profiles with peaks at the two ends of the spectrum than the uniform model. Since our
baseline is IC, we stick to Walsh’s approach.

4.2.2 Corpus of Axioms

We focus on a corpus composed of the following axioms: Neutrality, the Pareto

Principle, Faithfulness, Cancellation, Reinforcement and the Positive Respon-
siveness. This is very similar to the corpus used by Boixel and Endriss (2020), save for
the inclusion of Positive Responsiveness and the exclusion of the Condorcet Princi-
ple. Notice that the authors also included the axiom of Anonymity, which in our case
is already encoded in the modelling of anonymous SCFs. Further, as explained in the
previous chapter (Section 3.2.2), our corpus will also include the axiom AtLeastOne.

We decided to focus on a single corpus because, as stated earlier, the scope of this
experimental work is to test whether it is feasible to implement a justification algo-
rithm, rather than studying the behaviour and explanatory power of different corpora.
Moreover, by focusing on a corpus similar to the one used by Boixel and Endriss (2020),
we can directly compare our approach to their method. Since the performance of the
algorithm greatly depends on the corpus, the only way to understand the performance
gain is to focus on a comparable set of axioms.

Furthermore, this corpus has some desirable properties. First, it is composed of well-
known axioms within the Social Choice Theory literature. This means that we are not
working with a toy example, but with a corpus that is widely accepted and could be
used in real-world scenarios. Moreover, all of these axioms are universal axioms. As
discussed in Section 3.4.5, our algorithm is tailored (in terms of performance) towards
this category. Further, the axioms cover a small but diverse set of “connections” (in
the graph-theoretic sense) between profiles. Indeed, Reinforcement connects profiles
across different sizes of electorates, Neutrality connects profiles that are equivalent
up to a renaming of the alternatives, whereas Positive Responsiveness connects pro-
files where one single voter has changed their preference order. This leads to a rea-
sonably broad exploration of the space of profiles, as the three axioms connect the
profiles differently. This is important, as we want to check whether our algorithm can
handle such complexity in the instance graph. Finally, notice that the corpus is non-
trivial, as at least the Borda rule satisfies all axioms. Therefore, we can avoid checking
whether the obtained justifications are non-trivial, and we know that one cannot justify
multiple outcomes (Corollary 3.1).

Positive Responsiveness has been added as a representative of a very common
class of axioms within Social Choice Theory: monotonicity requirements. These ax-
ioms generally constrain the response of an SCF to the increase in the support of some
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alternative (the work of Zwicker (2016) contains a brief introduction to this kind of
axioms). In particular, we found this axiom to be strong enough to have good explana-
tory power, while on the other being weak enough to have some interesting SCFs that
satisfy it. Furthermore, this axiom is not too complex computationally to implement
(at least in our graph-like framework), as only one voter at a time may change his
preference order in a very restricted way.

The Condorcet Principle has been excluded from the experiments for reasons
already outlined by Boixel and Endriss (2020). Including the Condorcet Principle

would mean that all profiles with a Condorcet winner would be trivially justified with
a depth of 0 (that is, just by looking at the goal profile). Although this could still be
a satisfying explanation for some potential users, we are interested here in the perfor-
mance of the algorithm, and thus we deem it reasonable to avoid this simple scenario.
Furthermore, adding the Condorcet Principle would make the corpus non-trivial
(for example, all SCFs that satisfy Reinforcement violate the Condorcet Principle

(Zwicker, 2016)), thus making these experiments more challenging (as one would need
to test for non-triviality).24

Finally, notice that our corpus is very closely related to the axiomatization of the
Borda rule given by Young (1974): Neutrality, Anonymity (which in our case is built-
in the definition of SCFs), Reinforcement and Cancellation. The only difference lies
in our weaker formulation of Reinforcement, as previously discussed.

4.2.3 Experimental Setup

Recall that the purpose of the experiment is to show that, for most profiles tested, the
implemented algorithm is capable of finding at least one justification in a reasonable
amount of time. The rationale behind this is that, if we assume that the developed
technology is to be used in a real-world tool, we would like users to be presented with
at least one justification for their query within minutes. Thus, the details of the found
justifications and a more specific account of the behaviour of the algorithm will be left
for a qualitative study in the next chapter.

For the case of three alternatives, we exhaustively search for justifications for all
profiles from 2 to 8 voters. For the case of 10 and 12 voters, we sample the space of
profiles as described earlier.

For the case of four alternatives, we exhaustively search for justifications for all
profiles of 2, 3 and 4 voters. For the case of 5, 6, 7 and 8 voters, we sample the space
of profiles as described earlier. We also apply the sampling approaches to the case of

24 This does not hold for all the scenarios we consider in our experiments: for example, for 3 voters and 3
alternatives, the full corpus (i.e., including the Condorcet Principle) would be non-trivial, as observed
by Boixel and Endriss (2020). Despite this, we decide to leave out this axiom from all experiments for
consistency and simplicity, along with the aforementioned reasons.
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4 voters, in order to compare how each of the proposed methods fares if compared to
the exhaustive generation.

A further caveat is in order in this case. When running the experiments for four
alternatives, the maximum depth for the graph generation has been fixed to 3. This is
in line with the scope of the experiments, which is to test whether a justification can
be found within a reasonable amount of time, rather than whether a justification can
be found at all. Indeed, it has been observed (by previous experiments) that, for the
case of four alternatives, beyond the depth of 3 the time and memory requirements
of the algorithm drastically increase. Moreover, it seems that for the greater part of
profiles for which a justification can be found, a justification can be found within this
depth. Finally, explanations of depth greater than 3 are usually of considerable size
and complexity, thus defeating the very purpose of producing explanations for a non-
expert public. Consequently, we consider this restriction reasonable.

All experiments have been run on the LISA supercomputer, provided by SurfSARA.
The details of the machine can be found online.25

4.2.4 Results

In the following, we analyze the results. We first consider the case of three alternatives,
and then the case of four alternatives. Finally, we relate our findings to the results
obtained by Boixel and Endriss (2020). We stress that all of our results are relative to
the corpus we used and the scenarios we considered.

Before moving into the discussion, a general statement is in order. Notice that, for
all of the justified profiles, the justified outcome coincides with the Borda winner.
This does not come as a surprise: as we stated earlier, our corpus closely resembles a
characterisation of the Borda rule.

4.2.4.1 Three Alternatives

Table 4.1 presents the results of the experiments for the case of three alternatives.
As can be seen from the table, in this case, for most profiles one justification can be

found within a reasonable amount of time: the absolute maximum time encountered
is barely more than half a minute. The average is consistently within seconds, even
when accounting for the standard deviation. This is true for both the exhaustive gen-
eration and the sampling approaches. Note that, as the size of the scenario increases,
the standard deviation rises quite sharply, becoming greater than the average for every
scenario with 5 or more voters. This means that there are some outliers in the data:
indeed, consider the difference in average and maximum time. Although most of the
time we can explain the profiles quite quickly (low average), in most cases the maxi-

25 https://userinfo.surfsara.nl/systems/lisa
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Method (Voters) Explained profiles Average time (s) Maximum time (s)

Exhaustive
2 voters 5/5 (100%) 0.11 (± 0.01) 0.13
3 voters 9/10 (88.89%) 0.12 (± 0.01) 0.14
4 voters 22/23 (95.65%) 0.14 (± 0.13) 0.77
5 voters 42/42 (100%) 0.23 (± 0.31) 1.50
6 voters 83/83 (100%) 0.23 (± 0.37) 2.33
7 voters 132/132 (100%) 0.41 (± 0.69) 4.02
8 voters 222/222 (100%) 0.45 (± 1.06) 9.99

IC
10 voters 180/180 (100%) 0.40 (± 1.12) 10.74
12 voters 180/180 (100%) 0.93 (± 1.99) 9.26

PE
10 voters 180/180 (100%) 0.82 (± 2.61) 30.16
12 voters 180/180 (100%) 1.42 (± 4.05) 33.25

SP
10 voters 180/180 (100%) 0.47 (± 1.48) 9.34
12 voters 180/180 (100%) 0.66 (± 3.13) 25.44

Pf
10 voters 180/180 (100%) 0.48 (± 1.28) 9.36
12 voters 180/180 (100%) 1.19 (± 3.95) 25.69

Table 4.1: Results of the experiments for the case of three alternatives. IC is the impartial cul-
ture model and PE is the Polya-Eggenberger urn model. Moreover, SP and Pf are
the single-peaked and Preflib-based generation methods, respectively. The average
time is presented with standard deviation in brackets. For the exhaustive generation,
one profile per equivalence class is tested.

mum time is much greater (e.g., half a minute). The presence of these outliers explains
the high value of the standard deviation.

Notice that the only unjustifiable (equivalence classes of) profiles are found within
the cases of 3 and 4 voters. For 3 voters, a representative of the only unjustifiable class
is the following profile:

#1 : a � b � c
#2 : c � a � b
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Let this profile be called R3. Notice that the Borda winners, a and c, could be ex-
plained with the classical (stronger) formulation of Reinforcement (together with
Neutrality, the Pareto Principle and Cancellation) if we consider a profile of 5
voters. We will now sketch how to do so.

Example 4.3. Let R5 be:

#1 : a � b � c
#2 : c � a � b
#1 : a � c � b
#1 : b � c � a

This profile can be partitioned into the two following subprofiles:

#1 : a � b � c
#1 : c � a � b
#1 : b � c � a

#1 : c � a � b
#1 : a � c � b

For the first subprofile, by Neutrality, the outcome must be {a, b, c }. This was
shown multiple times in this work (for instance, see Example 2.2). The second sub-
profile must have outcome {a, c }, as either both or none of these alternatives must
win (again, by Neutrality) and b is Pareto dominated. Thus, by Reinforcement,
F(R5) = {a, c }.

However, R5 can also be partitioned as:

#1 : a � b � c
#2 : c � a � b

#1 : a � c � b
#1 : b � c � a

Note that, here, the first subprofile is R3, the profile for which we are trying to justify
an outcome. Since, by Cancellation, in the second subprofile all alternatives win,
whatever wins in R3 must also win in R5 (by Reinforcement). Therefore, F(R3) =

{a, c }, as every other outcome would contradict the fact that F(R5) = {a, c }, derived
above. 4
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Let us now consider the case of 4 voters. In this case, a representative of the unjusti-
fiable class of profiles is (let it be R4):

#1 : a � b � c
#3 : c � a � b

This profile is similar to R3, but with an additional preference order c � a � b.
Indeed, one could use the previous explanation for F(R3) = {a, c } (that required a
profile with 5 voters) and the fact that F(c � a � b) = { c } (by Faithfulness or the
Pareto Principle) to show that, by Reinforcement, F(R4) = { c } holds.

We can now explain why all scenarios from 5 voters are completely explainable.
Recall that all profiles up to 4 voters are explainable when dealing with a voting sce-
nario of 5 voters and 3 alternatives (as the only unexplainable profiles, R3 and R4,
can be explained using 5 voters). However, one can also verify that, for all profiles R

of 5 voters, there exists a pair of subprofiles R′ and R′′ such that R′ + R′′ = R and
Borda(R′) ∩ Borda(R′′) = Borda(R). To verify this, one can exhaustively enumerate, for
every profile with 5 voters, all its partitions into two subprofiles, and check whether
at least one good partition exists. Thus, one can use the explanations for the Borda
outcome for R′ and R′′ (which as discussed above, surely exist) to explain, by Rein-
forcement, the Borda outcome for R.

One can show that a similar argument holds for at least all scenarios of three al-
ternatives with 6, 7, 8 and 10 voters. That is, for any profile R in these scenarios,
we can find a partitioning into two subprofiles R′ and R′′ such that Borda(R) =

Borda(R′) ∩ Borda(R′′) and where the Borda outcome for both R′ and R′′ can be
automatically justified. This was computationally checked (again, by exhaustively enu-
merating all possible partitions). For 12 voters, our computational resources did not
allow for a throughout check; however, for all profiles that we generated for our exper-
iments, this property holds. Note that, for example, this does not hold for all profiles
of three voters and three alternatives (not surprisingly, since we were not able to justify
all of these profiles). Indeed, consider the aforementioned unjustifiable profile R3:

#1 : a � b � c
#2 : c � a � b

For this profile, the above property does not hold: no pair of subprofiles of this
profile can be used to justify {a, c } through Reinforcement.

Before moving to the case of four alternatives, let us briefly comment on the differ-
ent generation approaches. Since we can justify all the profiles that we generated, we
can only comment about the different time performances of the four methods. Look-
ing at Table 4.1, we can notice that the IC, single-peaked, and Preflib generation
approaches all obtain comparable average and maximum times. In contrast, PE seems
to have slightly worse performance, both in terms of average and maximum time. This
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might mean that, on average, profiles generated through this culture are harder to ex-
plain. That is, we might have to generate larger portions of the instance graph. Indeed,
we have found that, in these experiments, PE was the only culture requiring explana-
tions of depth 4. Specifically, among the PE-generated profiles, there was one profile
requiring an explanation of depth 4 for both the case of 10 and 12 voters. Every other
profile (also regarding the other generation methods) was explained within a depth
of 3. Furthermore, let us look at Table 4.2. This table shows the average depth needed
to explain profiles for each generation method (aggregated over the 10 and 12 voters
cases). From this data, we can notice that, as we said, PE seems to require on average
deeper explanations. Moreover, PE has the highest standard deviation, which is con-
sistent with the fact that this culture was the only one requiring a depth of 4 (that is,
PE has more outliers). As we will see, the experiments for four alternatives will be
consistent with this, as PE will be the culture with the lowest performance in terms
of explainability (that is, in terms of the percentage of justified profiles). Moreover, it
seems that the single-peaked and IC generation methods require the shallowest expla-
nations, on average. As we shall see, this seems not to match our results for the case
of four alternatives, where Preflib-generated profiles were the easier to explain.

Gen. Method Avg. Depth

IC 0.83 (± 0.63)
PE 1.15 (± 0.82)
SP 0.79 (± 0.60)
Pf 0.98 (± 0.64)

Table 4.2: Average depth needed to explain the profiles in each generation method (three alter-
natives case, 10 and 12 voters cases aggregated). IC is the impartial culture model
and PE is the Polya-Eggenberger urn model. Moreover, SP and Pf are the single-
peaked and Preflib-based generation methods, respectively. Standard deviation is
shown in brackets.

4.2.4.2 Four Alternatives

Table 4.3 presents the results of the experiments for the case of four alternatives.
As can be seen, compared to the case of three alternatives, we have a much harder

computational problem. In this case, the increase in the number of voters results in
a stark rise in computing time. Indeed, recall that the number of possible profiles
increases drastically as the number of alternatives rises (see Table 2.1). A detailed
analysis of the results follows.
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Method (Voters) Explained profiles Average time (s) Maximum time (s)

Exhaustive
2 voters 15/17 (88.24%) 0.21 (± 0.09) 0.35
3 voters 68/111 (61.26%) 1.11 (± 1.14) 4.95
4 voters 509/762 (66.80%) 3.15 (± 3.82) 16.76

IC
4 voters 124/180 (68.89%) 3.05 (± 3.82) 15.67
5 voters 113/180 (62.78%) 12.40 (± 12.67) 42.12
6 voters 132/180 (73.33%) 16.58 (± 21.92) 77.32
7 voters 140/180 (77.78%) 63.23 (± 65.19) 183.15
8 voters 167/180 (92.78%) 155.85 (± 189.46) 545.78 [9′05′′]

PE
4 voters 112/180 (62.22%) 3.18 (± 3.57) 14.95
5 voters 115/180 (63.89%) 10.74 (± 10.74) 40.13
6 voters 122/180 (67.78%) 23.36 (± 27.59) 99.40
7 voters 110/180 (61.11%) 42.12 (± 51.36) 182.15
8 voters 136/180 (75.56%) 109.83 (± 150.79) 539.60 [9′00′′]

SP
4 voters 143/180 (79.44%) 1.34 (± 2.11) 9.14
5 voters 115/180 (63.89%) 7.52 (± 8.55) 38.29
6 voters 132/180 (73.33%) 10.16 (± 14.71) 70.56
7 voters 134/180 (74.44%) 21.22 (± 28.69) 124.95
8 voters 140/180 (77.78%) 40.57 (± 64.23) 277.81 [4′38′′]

Pf
4 voters 149/180 (82.78%) 1.93 (± 3.35) 16.18
5 voters 133/180 (73.89%) 7.18 (± 10.09) 40.82
6 voters 145/180 (80.56%) 14.40 (± 22.84) 91.57
7 voters 149/180 (82.78%) 25.83 (± 43.37) 176.67
8 voters 161/180 (89.44%) 57.49 (± 103.45) 493.46 [8′13′′]

Total

– 3264/4490 (72.69%) 25.69 (± 69.03) 545.78 [9′05′′]

Table 4.3: Results of the experiments for the case of four alternatives. IC is the impartial cul-
ture model and PE is the Polya-Eggenberger urn model. Moreover, SP and Pf are
the single-peaked and Preflib-based generation methods, respectively. The average
time is presented with standard deviation in brackets. For the exhaustive generation,
one profile per equivalence class is tested. For the slowest test cases, the approxi-
mated time in minutes is reported in square brackets. We also aggregate the results
across all cultures and scenarios (last row).
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First of all, we can notice that, for all the experiments considered, the majority of
profiles (73%) can be explained within a reasonable amount of time. This can be seen
from the final row, which aggregates all results. Furthermore, all queries are answered
within minutes: the absolute worst time is slightly more than 9 minutes. Although
this is too much for a real-time application, we can envision a tool that works in an
asynchronous fashion. For example, we could think of a web application that returns
the result via e-mail. A further general tendency to notice regards the number of voters.
As the number of voters increases, the percentage of justified profiles (although with
exceptions) generally rises as well. This mirrors the pattern observed in the case of
three alternatives, where the only unjustifiable profiles were to be found in the smaller
scenarios.

One intuitive explanation for this trend could be the following. As we will see in the
next chapter, the Reinforcement axiom plays a crucial role in the explanatory power
of our corpus. Intuitively, most justifications are obtained by “breaking down” the goal
profile into two subprofiles that have a computable justification (that is, for which we
can find a justification with our approach). In this case, if the two subprofiles have
some winners in common, we can use Reinforcement to justify an outcome for the
goal profile.

As the size of the voting scenario increases (that is, the size of the goal profile, R?,
increases), the likelihood of finding a justification with the above structure increases as
well. One reason for this is simply that, the bigger a profile is, the more way there are
to partition it into two subprofiles. Hence, the more likely it is that at least one partition
leads to a justification. Furthermore, with a larger voting scenario, some subprofiles
have a computable justification that could not be retrieved in smaller scenarios. This is
because some profiles need to refer to a bigger profile through Reinforcement (see,
for example, the explanation involving the unjustifiable profile R3 in Example 4.3).
Thus, the larger the scenario is, the more likely is it that these explanations will be
computable for these subprofiles.

Let us now have a look at the different generation approaches. Contrary to the
case of three alternatives, here not all profiles have been explained. Thus, we can
comment on the differences in performance (in terms of explainability) between the
four methods.26

First of all, we notice that the four methods exhibit different results. Although the
number of profiles analysed is limited (due to the amount of computational resources
needed), we can already glimpse some interesting patterns. For example, we notice
that Preflib-generated profiles are generally easier to explain. This result, albeit lim-
ited to our specific corpus, is encouraging, as our goal is to explain real-world data.
Indeed, they give the best results (in terms of percentage of justified profiles) in all sce-

26 For this case, we do not report the average depth of the explained profiles. Indeed, since we imposed a
maximum depth and the four methods have different percentages of explained profiles, this data would
not be a good indicator of the explainability of the four methods.
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narios, save for the case of 8 voters (where IC obtains the best results). Furthermore, it
is surprising to see that PE seems not to lead to better results compared to IC. In fact,
it seems to be the worst culture in terms of explainability. This result correlates with
the results obtained for the case of three alternatives, where PE profiles seemed to re-
quire on average more time to be explained. Thus, our intuition that it better captures
the structure of real-world data (if compared to IC) turns out to be wrong, at least
with respect to explainability. A possible explanation for this is how PE crudely repli-
cates the preferences of voters, without actually inducing any further structure: that
is, when generating with PE, two preference orders are either identical or absolutely
independent from one another. This seems not to capture real-world preferences, as
one would assume that some voters might share extremely similar views, while only
disagreeing about the relative ordering of some alternatives.

We also notice that single-peaked profiles seem to be slightly easier to justify than
PE, and overall comparable to IC. Thus, we find that constraining the structure of
profiles might lead to better results than just reducing the number of unique ballots
(which is what PE does). More radically, it seems that greater values of α (that is, a
greater correlation between voters) does not always lead to an increased percentage of
explained profiles (Table 4.4). Although a bigger number of profiles should be consid-
ered to make a conclusive remark, these early results seem to suggest that it is not the
number of unique ballots that matters, but rather the structure of profiles.

Contagion Rate Profiles

0.01 109/150 (73%)

0.02 111/150 (74%)

0.05 104/150 (69%)

0.1 95/150 (63%)

0.2 86/150 (57%)

0.5 90/150 (60%)

Table 4.4: Percentage of profiles explained per α value in our experiments. We have aggregated
all results (from 4 to 8 voters) in one number to show the overarching trend.

This raises the question: what structural quality makes Preflib-generated profiles
easier to explain? First of all, one needs to remember that the answer to this ques-
tion has to be related to the corpus used for these experiments. Indeed, what is easy
to explain for this selection of axioms might be unjustifiable for a different one. Intu-
itively, whether a profile has a computable justification is merely a question of whether
this profile exhibits a certain structure that one or more axioms can predicate over. In
other words, each of the studied axioms can “match” a certain pattern of profiles.
For instance, Cancellation can only constrain profiles where all alternatives tie in a
majority contest.
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Consequently, it seems reasonable to investigate what makes Preflib-generated pro-
files easier to explain in relation to the Borda winner. This is because, as we have said
before, all justified profiles have the Borda winner as the outcome, due to our choice
of axioms. In the upcoming section, we propose two ways to investigate this.

4.2.4.3 Investigating Preflib Profiles

In the following, we try to investigate the explainability of Preflib-generated profiles
in relation to our corpus (i.e., to the Borda rule). As all of the profiles with three
alternatives were explained, we focus here on the case of four alternatives. We propose
two ways to do so.

condorcet and borda . One first natural explanation for why it might be easier
to justify a Preflib-generated profile is that real-world profiles might be, in some sense
more “well-behaved”. That is, for real elections, it might be much more likely for an
“uncontroversial winner” to exist. By uncontroversial winner, intuitively, we mean an
outcome it is extremely easy to argue in favour of. The most well-known notion of
such a winner in the literature is probably the notion of Condorcet winner. Indeed,
as it is generally understood, a Condorcet winner (when it exists) is considered an
extremely reasonable outcome.27 This is especially interesting in relation to our study
if we note that pathological cases, such as the Condorcet paradox (where there is no
Condorcet winner), might be much more common in theoretical considerations rather
than real-world elections (Gehrlein, 2006; Regenwetter et al., 2006; Van Deemen, 2014).
In light of this, we investigate whether the existence of a Condorcet winner is related
to the increased explainability of Preflib-generated profiles.

We could, then, test if it is easier to justify profiles with a Condorcet winner. How-
ever, since our algorithm (due to the choice of axioms) seems to always justify the
Borda winner, we focus on the following property. We check the relative frequency
of finding a justification when the Borda rule elects the Condorcet winner as the sole
winner. That is, a Condorcet winner exists and Borda chooses it as the sole winner. We
call this frequency p(J | B = C). Conversely, p(J | B 6= C) is the relative frequency
of finding a justification when the Borda rule and the Condorcet winner disagree (or
when the Condorcet winner does not exist). Both these frequencies were computed
from the data resulting from the above experiments. We then relate this to the relative
frequency, for each statistical culture, of the Condorcet winner being the sole Borda
outcome (called p(B = C)). We do so to understand whether this could explain the ob-
served differences in explainability. This last frequency, for every culture we consider,
was computed on a set of 100 000 randomly generated profiles, to give a more precise
account.

27 Notice that some have criticised the appeal of Condorcet winners (and thus, of the Condorcet Princi-
ple): for example, Fishburn (1974) constructs a large profile with a Condorcet winner, and argues that it
might not be the most reasonable winner for that particular profile.
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Scenario Probabilities Gen. Method
IC PE SP Pf

4 voters
p(J | B = C) 0.91 0.85 0.90 0.96
p(J | B 6= C) 0.56 0.44 0.63 0.59
p(B = C) 0.34 0.43 0.53 0.620.620.62

5 voters
p(J | B = C) 0.79 0.77 0.80 0.83
p(J | B 6= C) 0.14 0.17 0.00 0.09
p(B = C) 0.73 0.75 0.85 0.860.860.86

6 voters
p(J | B = C) 0.95 0.85 0.88 0.86
p(J | B 6= C) 0.58 0.54 0.48 0.67
p(B = C) 0.39 0.48 0.63 0.710.710.71

7 voters
p(J | B = C) 0.89 0.75 0.81 0.93
p(J | B 6= C) 0.52 0.21 0.19 0.34
p(B = C) 0.71 0.74 0.85 0.870.870.87

8 voters
p(J | B = C) 0.96 0.82 0.88 0.91
p(J | B 6= C) 0.90 0.68 0.54 0.83
p(B = C) 0.43 0.52 0.68 0.770.770.77

total
p(J | B = C) 0.88 0.75 0.85 0.90
p(J | B 6= C) 0.58 0.36 0.45 0.56
p(B = C) 0.52 0.58 0.71 0.770.770.77

Table 4.5: Results of our experiment about Condorcet winners and Borda winners (four al-
ternatives). IC is the impartial culture model and PE is the Polya-Eggenberger urn
model. Moreover, SP and Pf are the single-peaked and Preflib-based generation
methods, respectively. We include an extra row showing the total results (i.e., aggre-
gated across all the scenarios). The bold case for p(B = C) shows, across the four
generation approaches, which has the highest relative frequency (per row).

Table 4.5 shows the results of this experiment. We can notice two main aspects.
Firstly, this early data suggests that it is easier to find a justification when Borda agrees
with the Condorcet winner. Indeed, for all scenarios considered, the frequency of find-
ing a justification when this happens is relatively high (the lowest being 0.75, generally
above). Furthermore, this is usually comparatively higher than the opposite case. No-
tice that this holds even when p(B = C) is low: for example, in the case of 4 voters, for
IC, this frequency is only 0.34. However, in the same case, p(J | B = C) is 0.91.

The second thing to notice is that this phenomenon happens consistently more often
in Preflib-generated profiles. However, from this data alone we cannot conclude that
this is the reason for the better performance obtained in this case. Indeed, notice how
p(B = C) is consistently higher for PE generation than for IC. This is not consistent

92



4.2 experiments

with our previous findings, where IC seemed to perform better than PE. Further, notice
how this frequency is, for all the cultures, generally lower for scenarios with an even
number of voters. This might be related to the fact that in these scenarios it is much
easier to obtain a tie (for instance, Cancellation profiles can only happen with an even
number of voters). However, we do not register in our experimental results (Table 4.3)
this difference in explainability between profiles with an odd and even number of
voters.

All in all, we register a correlation between explainability with this corpus and the
presence of a Condorcet winner (that the Borda rule elects). However, more investiga-
tion is warranted to understand the correlation between this and the explainability of
the different statistical cultures.

subprofile consistency. In the above, we argued that, for well-behaved profiles,
it might be easier to come up with a justification for at least one outcome. We then
proposed a notion of well-behavedness based on the Condorcet winner. We now pro-
pose an alternative notion, based on the ideas of stability and consistency. We propose
a measure that, for a profile R, counts the number of subprofiles R′ of R such that the
Borda outcome for R′ is a superset of that for R. We focus on the Borda outcome, as
again, in our experiments we were only able to justify this outcome.

The rationale behind this measure is the following. Intuitively, this notion tries to
capture some notion of stability (with respect to voter withdrawal) or consistency (be-
tween a profile and its parts).28 Since the notion of subprofile is central to our justi-
fication algorithm (given the choice of axioms), we hypothesise that this measure of
“subprofile consistency” might correlate positively with the explainability of a profile.

Let us introduce our measure formally. First, let S(R) be the set of all possible sub-
profiles of R:

S(R) = {R1 ∈ R(X)+ | R1 +R2 = R, for some R2 ∈ R(X)+ }

Then, we define our measure M(R) as:

M(R) =
|{R′ ∈ S(R) | Borda(R) ⊆ Borda(R′) }|

|S(R)|

To give a further intuition about this measure, suppose that we were to stop a group
of voters outside of an election booth and ask about their casted ballots. Knowing that
we will use the Borda rule to select the winner, we compute the Borda outcome for
the (incomplete) preferences we polled. Let this outcome be the projected outcome. This
measure gives the likelihood that the real outcome of the elections will be a subset of

28 Indeed, the Reinforcement axiom was originally called Consistency by Young (1974), and is based on
an intuition related to ours, capturing the relationship between a profile and its subprofiles.
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the projected outcome. In other words, this is the probability that the real winners will
be all among the projected winners.

Similar to the previous paragraph, we will now study the correlation between this
measure and the explainability of a profile. To do so, we will present the average value
of this measure for profiles that we were able to justify (justified profiles) and for profiles
we were unable to (unjustified profiles). Further, we will show the average measure for
the different statistical cultures (culture), in order to understand whether this could be
related to the observed differences in explainability. This last value was computed on
a set of 100 000 randomly generated profiles.

Scenario Average M(R) for... Gen. Method
IC PE SP Pf

4 voters
justified profiles 0.72 0.77 0.75 0.81
unjustified profiles 0.42 0.40 0.44 0.39
culture 0.62 0.65 0.70 0.750.750.75

5 voters
justified profiles 0.74 0.77 0.82 0.84
unjustified profiles 0.43 0.45 0.47 0.54
culture 0.61 0.66 0.72 0.770.770.77

6 voters
justified profiles 0.69 0.73 0.79 0.83
unjustified profiles 0.42 0.46 0.48 0.53
culture 0.61 0.65 0.71 0.770.770.77

7 voters
justified profiles 0.64 0.74 0.80 0.82
unjustified profiles 0.34 0.48 0.56 0.45
culture 0.60 0.65 0.72 0.780.780.78

8 voters
justified profiles 0.59 0.68 0.79 0.83
unjustified profiles 0.48 0.52 0.50 0.60
culture 0.60 0.65 0.72 0.790.790.79

total
justified profiles 0.67 0.80 0.79 0.83
unjustified profiles 0.40 0.49 0.49 0.50
culture 0.61 0.65 0.71 0.770.770.77

Table 4.6: Results of the experiments about our measure M(·) (four alternatives). IC is the im-
partial culture model and PE is the Polya-Eggenberger urn model. Moreover, SP and
Pf are the single-peaked and Preflib-based generation methods, respectively. We
include an extra row showing the total results (i.e., aggregated across all the scenar-
ios). The bold case for the culture rows shows, across the four generation approaches,
which has the highest value (per row).

Table 4.6 shows the results of this experiment. Overall, we find results similar to
the previous experiment. First, we can notice how, across all scenarios, the average
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of this measure is consistently higher for the justified profiles than it is for the unjus-
tified profiles. This suggests, indeed, that this measure positively correlates with the
explainability of a profile. Furthermore, we can see that, for all scenarios considered,
Preflib-generated profiles have the greatest average measure. Hence, it seems that
this measure might in part explain the better performance obtained with this statisti-
cal culture. However, we observe the same issues as the previous experiment. Indeed,
IC has generally the lowest scores, which contradicts the results of Table 4.3. There-
fore, more research is warranted to understand the link between this measure and
explainability.

4.2.4.4 Comparison with the Base Justification Algorithm

Finally, let us now briefly compare our results with the results of Boixel and Endriss
(2020). In their experimental study, they focused on the scenario with 3 voters and 3
alternatives, and exhaustively generated all profiles of that scenario. More precisely,
similar to what we did, they generated one profile per equivalence class (due to the
symmetries in the space of all profiles). Furthermore, they worked with a corpus simi-
lar to our own. The only differences, as already mentioned, were our exclusion of the
Condorcet Principle and the inclusion of Positive Responsiveness. Their corpus
also included Anonymity, which in our case was built-in in our definition of SCFs.
Notice that our exclusion of the Condorcet Principle does not significantly impact
the performance, as it is mostly interprofile axioms that determine the complexity of
the graph generation phase.

We find that our approach leads to a dramatic improvement in performance. Accord-
ing to the authors, their algorithm can return at least one justification for all profiles of
that scenario in 5 to 30 minutes. With our approach, we can do the same in less than
0.14 seconds (with an extra interprofile axiom, Positive Responsiveness).29 Further,
their approach does not scale beyond such restricted scenarios. Indeed, although we
did not run an extensive study of the performance of their algorithm, handling sce-
narios with 5 or more voters seems unfeasible in a reasonable amount of time, even
in the three alternatives case. More radically, justifying profiles with 10 to 12 voters
seems inconceivable for the original approach. All in all, we find our approach to be
an improvement in computational terms.

Note that the investigation conducted by the aforementioned authors focused more
on a qualitative study of the retrieved justifications rather than a throughout study of
the performance of their algorithm. We will focus on similar aspects in the following
chapter.

29 To be precise, the two experimental studies were executed on two different machines. However, our
results, especially for that scenario, do not change noticeably if executed on less powerful machines.
We do not consider the difference in computational power as significant in determining the gain in
performance.
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4.2.5 Addressing the Research Question

The purpose of this experimental work was to directly address the research question.
We consider our results a positive answer to it. Indeed, we have shown how it is
possible to implement a justification algorithm capable of handling moderately-sized
instances. For the case of three alternatives, the overwhelming majority of the problem
instances are handled within seconds. For the case of four alternatives, it seems that
the algorithm is capable of quickly justifying real-world data in most cases. This is
especially true for the larger scenarios considered. Furthermore, we highlighted some
interesting trends in our data, noticing that Preflib-generated profiles seem to be,
in general, easier to explain. However, more experiments are warranted to confirm
or reject our observations on the different performances registered across different
statistical cultures.

As a final comment, we once again stress that our results are highly dependant
on the corpus we used. Indeed, at least in principle, one could design a set of much
stronger axioms that could be used to justify at least one outcome for every profile.
However, all of our axioms are well-known axioms taken from the literature.30 There-
fore, although not universal, our findings still show that for at least some reasonable
and widely accepted axioms the automatic justification of collective decisions is viable.

30 Save for Reinforcement, which we slightly adapted for our purposes.
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5
A C L O S E R L O O K AT J U S T I F I C AT I O N S

In this chapter, we are going to have a better look at some justifications. More precisely,
we are going to review some common patterns of explanation that occur when using
the corpus we employed so far. Furthermore, we will briefly discuss the notion of
explanation, and what makes something explanatory. This, we argue, might help us to
develop better justification algorithms.

The explicit objective of this chapter is to facilitate further research in this area, by
gaining insight into how each axiom can be used in a justification, and how different
axioms interact. This, in turn, can help in the discovery of new approaches or more
axiom-specific heuristics. Notice that this chapter does not aim to be (and perhaps can-
not be) an exhaustive list of all possible “explanation structures” that we can find with
this corpus (whatever that precisely means). Rather, it is an enumeration of the most
common kinds of justifications that we found, to exemplify what sort of explanations
our method can find with these axioms.

5.1 patterns of explanation

In this section, we will show some common patterns of explanation. Again, the pur-
pose of this chapter is to give an insight into what kind of arguments and proof struc-
tures our algorithm can produce. To do so, we will give multiple examples of possible
explanations involving these patterns. Consequently, we believe that it would be detri-
mental to the presentation to show the explanations in formal terms, that is, as sets
of axiom instances. Instead, we will write the explanations in natural language, in the
form of high-level mathematical proofs. The underlying arguments will be, of course,
the same. We believe that this gives a better understanding of the explanations we
show.

Note that we do not aim at defining formally what a pattern is here. Intuitively,
by pattern of explanation we mean some argumentative structure or scheme of interaction
between the instances of some axioms that have been observed in the explanations of
multiple justifications. Note that an explanation can be composed of multiple patterns.
To see why, consider that to justify the target outcome for the goal profile, we might
have to determine the outcomes of some other profiles needed in the main explanation.
Intuitively, for all of these other profiles, we can have a “subexplanation”, composed
of one or more patterns. For this reason, when giving the examples later on, we will
not refer to the goal profile, but rather, to an arbitrary profile (as these patterns need
not refer to the goal profile).
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However, such patterns can also be used to eliminate a given outcome. In other words,
a (sub)explanation might also be used to rule out a certain outcome for a given profile.
Note that this can lead to a justification of a particular outcome X? for some profile
R. Indeed, suppose that we eliminate all non-empty outcomes except for X?. Then, we
can appeal to the fact that at least one alternative should win in R to show that X?

must be the outcome.
Thus, in the following, we will divide our presentation into two parts. First, we will

show some patterns that can be used to directly determine the outcome. Then, we
will show some patterns that can be used to eliminate outcomes. Finally, notice that
all patterns that we will show only involve the axioms we employed in our exper-
iments, namely, Neutrality, the Pareto Principle, Faithfulness, Cancellation,
Reinforcement and Positive Responsiveness.1

5.1.1 Direct Winner Determination

In the following, we show some common patterns that can be used to directly deter-
mine the outcome.

5.1.1.1 Immediate Application of Intraprofile Instances

Arguably, the simplest kind of explanation pattern is to be found in those cases where
an outcome for a given profile R can be justified with one single intraprofile axiom
instance. In our corpus, this happens when R has a single voter (explained through
Faithfulness), or when all alternatives tie in a majority contest (explained with Can-
cellation).

Example 5.1. Consider the profile R = {a � b � c }. Here, there is only one voter. By
Faithfulness, we have that a (their top choice) must be the sole winner. 4

Another example could be a profile with a Condorcet winner (if we were to include
the Condorcet Principle in our corpus).

5.1.1.2 Raising a Winner

Suppose we can justify that x? ∈ F(R). If a profile R+ can be obtained by raising the
support of x?, then by Positive Responsiveness, we can justify that F(R+) = { x? }.

In our experiments, this pattern emerged most commonly when a non-singleton
outcome (containing x?) has been determined for R. For instance, if R is a Cancellation
profile, or when multiple alternatives can be justified through Symmetry (the axiom
derived from Neutrality).

1 Also, recall that our definition of SCF already includes a notion of anonymity, which is usually encoded
as a separate axiom (called, indeed, Anonymity).
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Example 5.2. Consider the profile R:

#1 : a � c � b � d
#1 : b � c � a � d
#1 : c � a � b � d

Notice that R can be obtained by raising the support of c from profile R′:

#1 : a � b � c � d
#1 : b � c � a � d
#1 : c � a � b � d

In R′, by the Pareto Principle, d cannot win. Further, by Symmetry, a, b and cmust
either all win or all lose. Thus, since at least one alternative must win, we have that
F(R′) = {a, b, c }. Hence, by Positive Responsiveness, we have that F(R) = { c }. 4

5.1.1.3 Composition by Reinforcement

Suppose that R can be partitioned into two profiles, R1 and R2, such that in both
subprofiles an outcome can be justified. Let these outcomes be X1 ⊆ X and X2 ⊆ X,
respectively. If X1 ∩X2 6= ∅, then we can justify outcome X1 ∩X2 for R via Reinforce-
ment.

This pattern is very generic, and in a sense, conceptually straightforward. It can
be seen as a composition of other patterns: that is, we justify the two subprofiles
through some pattern, and then compose this justification through Reinforcement.
In our opinion, this conceptual clarity makes this pattern also quite interesting from
an explanatory point of view. In a sense, we can see an explanation of this form as a
“divide-and-conquer” explanation: as long as the explanations for the subprofiles are
clear, the composed explanation should be clear as well.

For example, one case that frequently occurs is the case where, say, for R1, we can
justify outcome X (that is, all alternatives win), and for R2 we can justify { x? } (for
some x? ∈ X). Then, for R, we can justify outcome { x? } as well.

Example 5.3. Consider profile R:

#1 : a � b � c
#1 : c � b � a
#1 : a � c � b

Notice that this profile can be partitioned in profile {a � c � b }, where a wins
by Faithfulness, and profile {a � b � c, c � b � a }, where all alternatives win by
Cancellation. Thus, by Reinforcement, {a } wins in R. 4
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5.1.1.4 Explanations By Exhaustion

Suppose that we want to justify outcome X? ⊆ X for profile R through some axioms A

(with I(A) 6= ∅). To do so, this pattern employs the following argumentative structure:

(1) Consider another profile R′.

(2) Consider all possible (non-empty) outcomes X′ ⊆ X for R′.

(3) For every such outcome X′, by appealing to A, show that if X′ wins in R′ then X?

must win in R.

(4) Since at least one non-empty outcome must win in R′, conclude that X? must
win in R.

In other words, we show that, regardless of what wins in R′, X? must win in R.
This is akin to a proof by exhaustion, where we enumerate all possible cases (i.e., all
possible outcomes for R′), and show that the goal statement holds for each one of them.
To clarify this, we will now show an example. Since, in our experiments, we observed
this pattern emerging almost exclusively with the axioms of Neutrality and Positive

Responsiveness, we will focus on these axioms.

Example 5.4. Consider profile R:

#1 : a � b � c � d
#1 : d � c � a � b

We will justify, for this profile, outcome {a }. To this end, consider the following
profile, called R1:

#1 : a � b � c � d
#1 : d � c � b � a

Now, we will consider two cases: (1) a ∈ F(R1) and (2) a 6∈ F(R1). Trivially, there are
no other cases. We will show that, in both cases, F(R) = {a } must hold.

(1) Assume that a ∈ F(R1). Notice that R can be reached from R1 by raising the
support of a. Thus, by Positive Responsiveness, F(R) = {a } must hold.

(2) Assume that a 6∈ F(R1). Note that, by Symmetry (and thus by Neutrality),
the only possible outcomes of R1 are {a, d }, {b, c } and {a, b, c, d } (to see why,
notice that a and d are symmetric, and the same holds for b and c). Thus, if a
cannot win, the only possible outcome for R1 is {b, c }. Now, consider profile R2:

#1 : b � a � c � d
#1 : d � c � b � a
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Notice that R2 can be reached from R1 by raising the support of b. Therefore,
by Positive Responsiveness, F(R2) = {b }. Finally, consider the permutation
π : X → X with π(a) = b, π(b) = a, π(c) = c and π(d) = d (that is, we swap a
and b). Notice that π(R2) = R. Therefore, by Neutrality, F(R) = {a } must hold.

Thus, F(R) = {a } must hold. 4

5.1.2 Outcome Elimination

In this section, we show some common outcome elimination patterns. These structures
determine that a certain non-empty set of alternatives cannot be the outcome (of some
profile). Note that, as said earlier, this can be used in a justification as follows. Consider
profile R and an outcome X? ⊆ X. If we eliminate for R all non-empty X′ ⊆ X distinct
from X?, then we have justified that F(R) = X?. Note that for this to work we need to
use the fact that F(R) = ∅ cannot be the case.

5.1.2.1 Pareto Principle

The simplest pattern occurs when an alternative y is Pareto-dominated (that is, for
some other alternative x, every voter agrees that x � y). In this case, we can use an
instance of the Pareto Principle to eliminate every outcome containing y.

Example 5.5. Consider profile R:

#1 : a � b � c
#1 : a � c � b

Here, all voters agree that a � b. Further, they all agree that a � c. Therefore, by the
Pareto Principle, neither b nor c can be in F(R), so the outcome must be {a }. 4

5.1.2.2 Raising a Loser

Given a profile R, suppose that, by raising some alternative x?, we obtain a profile R+

such that, for R+, we can justify an outcome X′ ⊆ X such that { x? } ⊂ X′ (i.e., x? is
not the only winner, as X′ contains other alternatives). Then, surely x? cannot win in
R: for if this were true, by Positive Responsiveness x? would be the sole winner in
R+. However, this would contradict the fact that F(R+) = X′. Thus, we eliminate all
outcomes containing x? from the possible winners for R.

Example 5.6. Consider profile R:

#1 : a � b � c
#1 : c � a � b
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We will eliminate every outcome containing b for R. Now, consider profile R′:

#1 : a � b � c
#1 : c � b � a

Note that R′ is a Cancellation profile. Thus, F(R′) = {a, b, c }. Then, suppose b ∈
F(R). Notice that we can obtain R′ from R by raising the support of b. By Positive

Responsiveness, we have that F(R′) = {b }, which contradicts Cancellation. Thus,
b 6∈ F(R). 4

5.1.2.3 Symmetric Alternatives

For a given profile R, suppose that there is a permutation π : X→ X such that π(R) = R.
Then, as discussed when introducing the derived axiom of Symmetry (Section 4.1.4.1),
it is possible to partition X into a set of equivalence classes based on π. For all classes
[x]π, by Neutrality, either [x]π ∩ F(R) = ∅ or [x]π ⊆ F(R) must hold. In other words,
the alternatives in an equivalence class must either all win or all lose. Thus, for every
non-empty set of alternatives X′ ⊆ X, we eliminate X′ if X′ is neither an equivalence
class nor the union of several classes.

Example 5.7. Consider profile R:

#1 : a � b � c � d
#1 : b � a � d � c

Moreover, consider the mapping π such that π(a) = b, π(b) = a, π(c) = d and
π(d) = c (that is, we swap a with b and c with d). Notice that π(R) = R. Further, π
induces two equivalence classes: {a, b } and { c, d }. By Neutrality, we can eliminate
the outcomes X′ ⊆ X that are not a union of equivalence classes. For example, {a, c }
cannot be the outcome, as it is not an equivalence class, and it cannot be obtained by
combining several classes. Therefore, we are left with the following possible outcomes:
{a, b }, { c, d } and {a, b, c, d }. 4

Notice that this pattern rests upon the assumption that voting rules are anonymous.
Indeed, Neutrality would not be enough for this pattern to function if we were to
work with non-anonymous profiles. To explain this, we will show an example involv-
ing a non-anonymous profile.

Example 5.8. Let N = { 1, . . . , n } be a set of n voters. Recall that L(X) is the set
of all linear orders over X. A non-anonymous profile P for voters N and alternatives
X is a vector of preference orders (�1, ..., �n) ∈ L(X)n.2 Here, �i corresponds to

2 We use the variable P instead of R to avoid confusion between non-anonymous profiles and anonymous
profiles.
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the preference order expressed by voter i. A non-anonymous SCF for voters N and
alternatives X is a function F : L(X)n → 2X \ {∅ }. Finally, given a permutation of
the alternatives π : X → X and a profile P, we define π(P) as the profile we obtain
by replacing every occurence of x by π(x) in P. The axiom of Neutrality (for non-
anonymous SCFs) prescribes that, for every non-anonymous profiles P and P′, if for
some permutation π : X→ X it holds that P = π(P′), then F(P) = π(F(P′)).

Then, consider the following non-anonymous profile P? = (a �1 b, b �2 a ). For
the anonymous variant of this profile, we argued multiple times in this work that,
by Neutrality, the outcome must be {a, b }. Notice that the same does not hold for
the non-anonymous P?. Indeed, consider the SCF F1 that always elect the top-ranked
alternative of voter 1 as the sole winner. Rules of this kind are known as dictator-
ships (famously characterised by Arrow (1951)). Notice that F1 trivially does not satisfy
Anonymity. Further, this rule satisfies Neutrality: regardless of the names of the
alternatives, it is always the top choice of voter 1 that wins. Importantly, note that
F1(P

?) = {a }.
Indeed, to show that {a, b } must win in P?, we need an extra axiom. Given a per-

mutation of the voters τ : N→ N, we define:

τ((�1, ..., �n)) = (�τ(1), ..., �τ(n))

That is, we swap the names of the voters according to τ. The axiom of Anonymity

prescribes that, for every non-anonymous profiles P and P′, if for some permutation
τ : N → N it holds that P = τ(P′), then F(P) = F(P′). Intuitively, this means that the
names of the voters should not matter: if we swap the names of voters, the outcome
should not change.

With this, consider again profile P? = (a �1 b, b �2 a ). Assume that the non-
anonymous SCF F satisfies Anonymity and Neutrality. For the sake of the contradic-
tion, assume that F(P?) = {a }. Now, consider profile P = (b �1 a, a �2 b ), obtained
by swapping the names of a and b. Clearly, by Neutrality, F(P) = {b } must hold.
But notice that, if we swap the names of voters 1 and 2 in P, we obtain again P?.
Thus, by Anonymity, F(P?) = {b } must hold. Since we assumed that F(P?) = {a }, we
derived a contradiction. Therefore, F(P?) 6= {a }. Note that a similar argument can be
made to show that F(P?) 6= {b }. Then, by Anonymity and Neutrality, we have that
F(P?) = {a, b } (as at least one alternative must win). 4

5.1.2.4 Elimination by Contradiction via Reinforcement

Consider a profile R1 and an outcome X1 ⊆ X. We will eliminate X1 for R1.
To this end, consider another profile R2 and the superprofile R1+R2. Intuitively, this

pattern works as follows. If we already know what wins in R2 and R1 +R2, we can
eliminate every outcome for R1 that would contradict Reinforcement. More formally,
suppose that we justified some outcomes X2 ⊆ X and X1+2 ⊆ X for R2 and R1 +R2,
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respectively. Then, if X1 ∩ X2 6= ∅ and X1 ∩ X2 6= X1+2 hold, we can eliminate X1 for
R1, as this would contradict Reinforcement.

This is akin to a proof by contradiction, as we show that, were some “bad“ outcome
to win in R1, we would have a contradiction. This might sound rather abstract: let us
see an example.

Example 5.9. Let R be the following:

#1 : a � b � c
#2 : c � a � b

We will use the above pattern to eliminate {b } for R. To do so, consider profile R′:

#2 : b � a � c
#1 : c � b � a

Without going into the details, notice that we can justify F(R′) = {b } through Re-
inforcement, Positive Responsiveness, Cancellation and Faithfulness.3 Further,
notice that the profile R+R′ is a Cancellation profile:

#1 : a � b � c
#2 : c � a � b
#2 : b � a � c
#1 : c � b � a

This holds because every pair of alternatives ties in a majority contest. Thus, by
Cancellation, F(R+R′) = {a, b, c }. Therefore, F(R) 6= {b }. For if this was the case,
then we would have, by Reinforcement, that F(R+R′) = {b }. But {b } cannot win in
the superprofile (by Cancellation). Hence, F(R) 6= {b }.4 4

For another example, see the justification shown in Example 4.3. Specifically, in
that case, we showed that every outcome, except for the Borda outcome, leads to a
contradiction.

5.1.2.5 Elimination by Contradiction via Neutrality and Positive Responsiveness

Consider a profile R and an x? ∈ X. We will show a pattern involving Neutrality and
Positive Responsiveness that eliminates all outcomes containing x? for profile R.

3 Briefly, to justify {b }, we can partition R′ into the profile {b � a � c } (where only b wins by Faithful-
ness) and a profile where b is a quasi-tied winner. Such winners can be justified through Cancellation

and Positive Responsiveness, as explained in Section 4.1.4.2.
4 Coincidentally, notice that the above argument actually eliminates for R every outcome containing b.

However, we talked about a specific outcome for simplicity.
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Intuitively, this pattern works as follows. Consider a profile R′ (not necessarily dis-
tinct from R). We show that, if x? wins in R, then by Positive Responsiveness and
Neutrality there is no possible outcome for R′. More specifically, we will show that,
if x? ∈ F(R), then we can justify two different outcomes for R′ (by Positive Respon-
siveness and Neutrality). Clearly, this cannot be the case, as any SCF can only elect
one outcome. Thus, x? 6∈ F(R).

There are many and diverse ways in which this pattern can be realised, and it is not
feasible to show them all here. Instead, consider this example.

Example 5.10. Consider the following profile, called R:

#1 : a � b � c
#1 : c � a � b

Suppose that b ∈ F(R). Then, let π : X → X be a permutation that swaps a and b.
Consider profile π(R):

#1 : b � a � c
#1 : c � b � a

By Neutrality, we derive that a ∈ F(π(R)), because π(b) = a. Now, consider profile
R′, obtained by raising the support of b in R:

#1 : a � b � c
#1 : c � b � a

By Positive Responsiveness, F(R′) = {b }. But notice that we can also obtain R′ from
π(R) by raising the support of a. Since we proved that a wins in π(R), by Positive

Responsiveness, F(R′) = {a }. We derived a contradiction: therefore, b 6∈ F(R). 4

5.1.3 Summary

Overall, we can observe three main macro-patterns of explanation.

• Immediate explanations. These are the explanations where the goal profile can
be immediately justified, without looking at any other profile. Let us call such
profiles immediately justifiable. These are the explanations grounded in one of the
following axioms: Cancellation, Faithfulness, Neutrality (through Symme-
try), and Pareto Principle.

• Direct explanations. These are the explanations where the goal profile is not
immediately justifiable, but can be connected to one (or more) immediately justi-
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fiable profiles through a chain of instances of either Reinforcement or Positive

Responsiveness.

• Indirect explanations. These are the explanations that derive a contradiction for
all but one of the outcomes for the given profile R, or that justify an outcome
for R by exhaustively considering some cases. For example, this happens when
we refer to a superprofile of R, and by Reinforcement, show that if we do not
rule out some outcomes we get a contradiction for this bigger profile.5 Alterna-
tively, indirect explanations can be grounded in Positive Responsiveness and
Neutrality, where these two axioms can be used to derive a contradiction for
every outcome (except the target outcome).6

We found that the first two categories are of particular interest. Indeed, they are
much less varied than the third case, and much more predictable, two qualities that
can help when designing axiom-specific heuristics. Furthermore, in terms of explana-
toriness, they seem much easier to understand. On the one hand, immediate explana-
tions are extremely straightforward. On the other hand, direct explanations have some
sort of “constructive flavour”. In a sense, the target outcome is constructed (through
the interprofile axioms) from the outcomes of some immediately justifiable profiles. In
other words, we start from some very easy-to-explain profiles, and then build our goal
profile through some interprofile axioms instances, showing that, under this construc-
tion, the target outcome must win.

5.2 explanations and explanatoriness

To conclude, we will give some remarks on the notions of explanation and explanatori-
ness.

First, let us recall the definition of justification that we adopted. Given a profile R

and an outcome X?, a justification 〈AN, AE〉 for X? in R is composed of a normative basis
AN and an explanation AE. The normative basis contains some intuitively appealing
conditions that a voting rule might satisfy. In particular, the axioms in AN entail that
X? must be the outcome for R. Therefore, the normative basis already prescribes, by
itself, that X? must win in R. The role of an explanation is to show why this is the case.

5 Notice that this construction, that refers to arbitrarily large superprofiles, is a very common and powerful
technique used in proofs concerning (the classical formulation of) Reinforcement. See, for example, the
original characterisation of the Borda rule by Young (1974) (in which Young introduces this axiom), or
the alternative proof of the same result given by Hansson and Sahlquist (1976). Furthermore, a similar
construction is used in the algorithm proposed by Cailloux and Endriss (2016) to automatically justify
the Borda outcomes. However, as already argued multiple times, this structure might not be entirely
satisfactory in terms of explanatoriness.

6 Note that some of these indirect explanations involving Positive Responsiveness and Neutrality would
require Anonymity when working with the non-anonymous model.
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Historically, the notion of explanation has been linked with the notion of causation by
philosophers (Mayes, 2001). This captures well the intuitive meaning of explanation:
to explain a natural phenomenon means, in some sense, to identify its cause. The no-
tion of explanatory proof in the philosophy of mathematics is perhaps more relevant to
our discussion, but is grounded in similar intuitions. In her work, Hanna (2000) lists
several epistemic aims of mathematical proofs, and identifies the fundamental func-
tions as verification (which is concerned with the truth of a statement) and explanation
(providing insight into why something is true). In particular, she insists that, in the ed-
ucational domain, proofs should be first and foremost explanations. Given the scope
of our work, we claim that this holds for our case as well.

Thus, both in natural sciences and in mathematics, we can make the distinction be-
tween verification and understanding. Indeed, in science, that a certain phenomenon is
“true” might be already established without an explanation. For instance, we know that
if we drop an apple the apple lands on the ground, and we can verify that this is true
by observation. However, to understand why this holds, we need to identify the cause
of this event (e.g., gravity). Similarly, in mathematics, we might know that some state-
ment is true without knowing why. For example, this happens with some computer-
generated proofs, whose size might be in the hundreds of terabytes (Benzmüller, 2019).
These proofs can be used to verify that something holds, but it is hard to argue that
they give any understanding for why it does hold.

How does this relate to the notion of justification proposed by Boixel and Endriss
(2020)? Consider a justification grounded in normative basis AN in favour of outcome
X? for R?. Intuitively, what this justification states is that “if you accept AN, then you
must accept that X? wins in R?”. More formally, this can be expressed as a statement
S: [

I(AN) 6= ∅
]
∧
[
F ∈ I(AN) =⇒ F(R?) = X?

]
Now, consider a program P that verifies S as follows. Given AN, R? and X?, P checks

whether AN is non-trivial and whether every F in I(AN) satisfies F(R?) = X?. How
this program does so is not important (e.g., it might enumerate all F ∈ I(AN)). If the
statement S holds, then P prints the following sentence:

“It has been computationally verified that every rule that satisfies AN elects X?

in R?.”

This program, by construction, verifies that our goal statement S holds (modulo
some proof of correctness for P itself). This program might even be convincing (which
is not the same as explanatory) in the sense that the users might believe that S is true
without understanding why this is so. For example, a non-expert user might be con-
vinced by the authority of P (“some experts designed this program, and proved its
correctness; since the program claims that S holds, S has to be true”). However, it does
not explain why X? is the right outcome for R? in terms of the normative principles
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encoded in AN. With an abuse of language, P gives no understanding of what causes
every rule in I(AN) to elect X? in R?.

All this discussion serves to state the following, perhaps trivial, fact. The explicit
goal of the algorithm we proposed, and of the framework introduced by Boixel and
Endriss (2020), is to produce understanding in the users. Indeed, if we want to have a
truly open, transparent and fair democratic process, the users must understand why
a given outcome fully satisfies their notions of fairness. Were this not to be the case,
we would have designed a simpler algorithm, such as P, that verifies statements such
as S without explaining them. Therefore, it is perfectly reasonable to use the notion of
explanatoriness (the quality of being explanatory) to guide the search for justifications.
That is, as our explicit goal is to generate explanatory justifications, a viable line of
research would be to focus on an algorithm that only considers a subset of all possi-
ble justifications (i.e., those that we deem as explanatory) in the hope of achieving a
better performance (and retrieve better justifications). For example, as already noted
by Boixel and Endriss (2020), a concrete way to do so could be to employ the notion
preferred explanation proposed in the context of constraint programming (Junker, 2004).
Alternatively, we could focus on what we called immediate and direct explanations
above. As we said, such explanations are more limited and quite well-behaved. There-
fore, developing a notion of “direct justification” could lead to a simplification of the
problem, and thus to a faster justification algorithm.

So far, we discussed the function and role of an explanation. However, this raises a
question: what are the characteristics of an explanatory proof? We have already intro-
duced a possible distinction between direct and indirect justifications. However, this
distinction was induced from our observations, and thus might be biased. Therefore,
let us consider this problem from a broader angle.

One way to determine what makes a proof explanatory (again, already proposed by
Boixel and Endriss (2020)) would be to conduct an empirical study to find out what
users consider explanatory. Given that the algorithm we propose can handle much
bigger (and thus more interesting) problems, we hope that our contributions can be
used to conduct such a study. However, this was out of the scope of our work. For now,
let us consider what philosophers proposed in the context of mathematical proofs. In
her work, Hanna (2018) reviews some philosophical models of explanation (in the
context of mathematics). A model that is particularly relevant for our discussion is the
one that Steiner (1978) put forward. According to his view, a proof of a theorem is
explanatory when it makes evident that some “characterising property” is responsible
for making the theorem true. In his words, “an explanatory proof makes reference
to a characterizing property of an entity or structure mentioned in the theorem, such
that from the proof it is evident that the result depends on the property” (Steiner,
1978, p. 143). What this property depends on the context and changes from theorem to
theorem. It is loosely defined as an essential property of a given mathematical object
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which distinguishes it from other objects. This sounds rather abstract, so let us give an
example.

Example 5.11. Let Sn =
∑n
i=1 i. Consider the formula characterising the sum of the

first n natural numbers Sn:

Sn =
n(n+ 1)

2
(5.1)

This equivalence can be proved, for instance, by induction. This is a well-known
proof, and it is often used to exemplify the principle of induction. Thus, let us only
briefly recall it. First, we show that Equation 5.1 holds for S1. Then, we show that, if
we assume that the equation holds for Sn, then it must hold for Sn+1. The claim that
Equation 5.1 holds then follows from the principle of induction.

According to Steiner (1978), a more explanatory proof is the following, which is
based on the characterising property of symmetry.7 Consider the sum of the first n
natural numbers:

Sn = 1+ 2+ · · ·+ (n− 1) +n

We can add to this quantity the same sequence reversed:

2Sn =1+ 2 + · · ·+ (n− 1) + n +

n+ (n− 1) + · · ·+ 2 + 1

Trivially, this can be rewritten as:

2Sn = (n+ 1) + · · ·+ (n+ 1)︸ ︷︷ ︸
n times

= n(n+ 1)

Thus, by dividing both sides by 2, we obtain Equation 5.1. Steiner argues that the
explanatory power of this proof lies in the fact that it highlights a characterising prop-
erty of Sn. That is, it makes it evident that the result depends on the symmetry between
1+ 2+ · · ·+ (n− 1) +n and n+ (n− 1) + · · ·+ 2+ 1.

In sum, the first proof can be used to verify that Equation 5.1 holds, but it does
not provide an intuitive understanding of why it holds. The second proof is more
illuminating, as it explains that 2Sn = n(n+ 1) holds because of the symmetry of 2Sn.
The claim that Equation 5.1 holds follows trivially from this. 4

7 This proof is commonly known as the Gaussian proof.
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We claim that the notion of characterising property can be applied to voting prob-
lems as well. For example, consider profile R:

#2 : a � b � c
#1 : a � c � b

Outcome {a } can be easily justified by appealing to the Pareto Principle. Indeed,
it is easy to explain that {a } should win because R is unanimously ranked as the top
choice. Thus a dominates every alternative. Similarly, consider R′:

#1 : a � b � c
#1 : b � c � a
#1 : c � a � b

As we argued multiple times, by Neutrality, it must hold that F(R′) = {a, b, c }.
Again, it is easy to see that this profile is symmetric, in the sense that the alternatives
differ only in name. Thus, if we want to be neutral, we cannot favour any alternative.

Finally, consider the explanation shown in Example 5.3, where we justify outcome
{a } for R through Reinforcement. This explanation justifies the outcome by referring
to the fact that R is composed by two subprofiles for which we can determine the
outcome. Clearly, the explanatoriness of this depends on the two “subexplanations”.
However, the composition step itself can be thought of as a characterising property: “a
wins in R because R is composed of two profiles where a wins”.

In contrast, consider the explanation shown in Example 5.4. This explanation does
not seem to make use of such an intuitive property. It is rather obscure, and it is
hard to express concisely why the outcome must be {a }. Indeed, this feels more like a
verification of why {a } should win, rather than an explanation.

Note that we are not claiming that the explanations shown before “have” a charac-
terising property, and the latter does not. Perhaps, we were just unable to see it and
state it explicitly. In fact, this aims not to be a formal definition of explanatoriness.
Thus, the importance of conducting an empirical assessment of what the users con-
sider as explanatory still stands. What we are highlighting here is merely a conceptual
framework, or model, to understand the notion of explanatoriness, which could be
useful to guide the experimental work (either in combination, or as an alternative to,
the notion of direct justifications discussed earlier). Possibly, this concept could then
be used to achieve better performance in the search for justifications. For instance, we
could build a set of profile properties (akin to the ones outlined above, such as sym-
metry, unanimity and composition) that we consider as “easy to explain”. These could
be extracted, for example, as a by-product of the aforementioned experimental study,
in combination with pattern matching tools (e.g., unsupervised learning or clustering
algorithms). Then, we could use these structures to guide the search. For example, we
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could use them to define more derived axioms (by formalising them in terms of the ax-
ioms we use). But we might even focus completely on such easy-to-explain structures.
In other words, we could “force” the system to use only the explanation schemes we
derived. Indeed, as argued above, focusing on explanatory justifications is perfectly
reasonable, and might help in terms of both performance and user satisfaction.
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6
C O N C L U S I O N

In this chapter, we summarise our findings. Moreover, we propose some directions for
future research.

6.1 thesis summary

The automated justification of collective decisions, as developed by Boixel and Endriss
(2020), is a framework that can be used to support groups in their decision making,
designed to mitigate the choice-theoretic hardships of collective deliberation. In this
context, a justification consists of a set of arguments in favour of a particular choice,
and it is grounded in some normative conditions for collective decision processes (so-
called axioms). Specifically, a justification explains why, if you accept these conditions,
then you ought to accept said choice.

Despite its theoretical usefulness, this model poses some serious algorithmic chal-
lenges. For example, the base algorithm proposed by the above authors can only pro-
vide justifications for problem instances of a very limited size. More radically, as shown
by Boixel and de Haan (2021), the automated justification of collective decisions is rid-
dled with discouraging complexity-theoretic results.

In this thesis, we addressed this computational issue. Our research question can
be summarised as: “is it possible to design an algorithm for the problem of comput-
ing justifications for collective decisions that achieves good performance in practice?”.
Here, by “good performance in practice”, we mean an algorithm that performs well
enough to satisfy some potential real-world users. In particular, we focused on the
case of scenarios with around ten voters and three to four candidates. Note that our
work, as well as the work of all the aforementioned authors, fits into the domain of
Computational Social Choice (Brandt et al., 2016), a recent and thriving field that lies at
the intersection of Computer Science and Social Choice Theory. We will now give a
summary of our main results.

To address our research question, we proposed a justification algorithm that can be
used in practice, which we called IterJustify. This can be regarded as our main con-
tribution. The key idea behind our approach is the notion of instance graphs, which can
be seen as a structured (graph-theoretic) view of the kind of arguments that a justifica-
tion might express. This view allowed us to naturally define a notion of “justification
depth” which, in turn, enabled us to place a bound on the maximum depth during
the search. This resulted in a significant restriction of the search space. We proved that
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IterJustify is sound (that is, it can only return justifications for the input problem) and,
when no bound is placed on the maximum depth, complete (that is, it returns all justi-
fications of the input problem that we consider interesting). Furthermore, we showed
two general families of heuristics for our algorithm, which we also proved to be sound
and complete.

The significance of this contribution is two-fold. First, it allowed us to show that
the automated justification of collective decisions is, in practice, viable. To establish
this, we defined a concrete implementation of IterJustify (with the addition of some
heuristics) and tested it on several input problems. Such problems were both ran-
domly generated and extracted from real-world data.1 In these experiments, we used
a set of well-known axioms from the Social Choice Theory literature. When analysing
our findings, we found that most of the input problems could be explained in a rea-
sonable amount of time, especially in the case of real-world data. Although our results
are specific to the axioms we employed during the experiments, they show that the
automated justification of collective decisions is feasible. Thus, we consider our results
a positive answer to the research question, and our approach an improvement in terms
of performance over the algorithm proposed by Boixel and Endriss (2020).

Secondly, our algorithm can be used as a tool for researchers interested in this prob-
lem. Indeed, since it can handle problems large enough to be interesting, it can be used
to analyse the explanations retrieved with a particular corpus, to understand how the
different axioms interact. For example, we performed such an analysis for the justifica-
tions retrieved with the axioms we employed in our experiments. Specifically, we gave
a rundown of the most common patterns of explanation (or argumentative structures)
that we observed. We summarised these observations and presented an informal and
partial categorisation of the justifications we have seen. To conclude, we reflected on
the notions of explanation and explanatoriness, and discussed how we could leverage
on these notions to obtain better performing algorithms.

6.2 future work

The main goal of this work was to assert the viability of the automated justification of
collective decisions in practice. We consider this goal achieved. However, there are still
many exciting lines of research in this direction.

Firstly, one could study the performance of our approach with different axioms. For
instance, one prominent class of axioms that were left out of our study is the class of
strategy-proofness conditions. Intuitively, these axioms prescribe that voters should not
be able to improve the outcome of the elections (from their point of view) by misrep-
resenting their true preferences. The problem of strategic voting is one of the most
studied problems in Social Choice Theory (see the chapters by Barberà (2011) and
Conitzer and Walsh (2016) for an overview), and arguably these axioms are among the

1 Real-world electoral data was taken from Preflib: https://www.preflib.org/
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most appealing. Indeed, it seems reasonable that the voters should be incentivised to
vote truthfully. Therefore, it might be interesting to include them in our experiments.
Another class that was left out, as already discussed in Section 3.4.5, is the class of ex-
istential axioms (such as Non-Imposition). Perhaps, if a different encoding language
is used (e.g., where the explanations have access to quantifiers), some interesting justi-
fications involving these axioms might exist. Since the approach we introduced seems
not to work that well for these axioms, one could design some heuristics specifically
for this case.

Secondly, as already extensively discussed in Chapter 5, it would be interesting to
define a formal model of explanatoriness (in the context of group decisions). Such a
model should be at least strong enough to separate the explanatory justifications from
the non-explanatory ones. As a starting point for this, one could consider the notions
described in the previous chapter (direct justifications and characterising properties),
or conduct an empirical study of what users deem explanatory. We believe that our
algorithm can play a role in this, as it is capable of justifying voting problems that are
large enough to be interesting for users. This model could then be used to frame the
problem from a different angle (by focusing solely on explanatory justifications). This,
in turn, could lead to a radically different (and perhaps, faster) algorithm.

Thirdly, one could consider to further restrict the space of the possible profiles. Re-
call that the performance of our algorithm greatly depends on the size of this space,
since, in a sense, during the execution we need to walk through this set. Consider how,
by focusing on an anonymous model, we restricted this space (when compared to the
model employed by Boixel and Endriss (2020)). This idea can be taken further. For
example, one could focus on a symmetric model, that is, a model that is anonymous
and neutral (see the work of Merlin (2003) for an example of such a model). Moreover,
one could apply the idea of domain restrictions here as well. Indeed, recall the idea
of single-peaked profiles, as used in our experiments. One could focus on justifica-
tions that only mention such profiles. This could be helpful, for example, when the
alternatives are arranged on the left–right spectrum. In such a scenario, single-peaked
profiles seem natural; thus, it sounds reasonable to provide justifications that only
mention such natural profiles.

Lastly, one could add some rule-specific heuristics. Consider, for example, the algo-
rithm proposed by Cailloux and Endriss (2016). This algorithm, given a profile, returns
a justification in favour of the Borda outcome. The justifications computed by this
method are similar to the ones we considered: they are composed of axiom instances,
and consist of a step-by-step explanation for why the target outcome should win. Here,
the user is not free to choose the normative basis: all justifications are grounded on
(a variant of) the axioms used by Young (1974) to characterise the Borda rule. Further-
more, Peters et al. (2020) showed that, in this framework, the Borda winner can always
be explained in O(m2) steps (where m is the number of alternatives). More generally,
they derived a lower bound for the length of the explanations of a broad number of
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voting rules (and the corresponding axiomatisations). Based on this framework, one
could define such an algorithm for a selection of some widely adopted voting rules.
Then, to justify any outcome (grounded on any set of axioms), the system could check
the following: “is there a voting rule (among those we have an algorithm for) that
is characterised by some axioms in the input corpus?”. If this holds, instead of the
general graph-based algorithm, the system could run the SCF-specific method.
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