
The Etiology of Cybersecurity

Michele Ambrosi, Francesco Beltramini, Federico De Meo, Oliviero Nardi,
Mattia Pacchin, and Marco Rocchetto(B)

V-Research, Verona, Italy
{michele.ambrosi,francesco.beltramini,mattia.pacchin,
marco.rocchetto}@v-research.it, research@demeo.eu,

olivieronardi@gmail.com

Abstract. The objective of this research is to lay the foundations for
the development of a scientific theory that determines (all and only) the
possible insecure and secure configurations of any abstract system to
be used for the risk assessment of systems. We claim that cybersecurity
weaknesses (i.e. errors) are at the beginning of the causality chain that
leads to cybersecurity attacks. We formulate a hypothesis that we use
to predict the weaknesses in the architectural design of a system. Our
hypothesis allows for the definition of a mathematical formula which
describes the cybersecurity of a system. We implemented a prototype
cybersecurity risk assessment tool that, based on our hypothesis, predicts
the weaknesses in a UML model of a (cyber-physical) system.

Keywords: Risk management · Cyber-physical systems · Risk
assessment · Security framework

1 Introduction

A scientific theory is an explanation of a phenomenon such that the explanation
follows the scientific method. The scientific method is an empirical method that
aims at mitigating potential fallacies in theories. Karl Popper famously argued
(e.g. in [15]) that a scientific theory can never be verified but only falsified, that
a theory should not be conceived by using the principle of induction,1 and that
empirical experiments should be considered as the only evidence to support the
non-falseness of a scientific theory. In [7], Cormac Herley explores what he calls
“an asymmetry in computer security”, which he defines as follows: “Things can
be declared insecure by observation, but not the reverse. There is no observation
that allows us to declare an arbitrary system or technique secure”. With secu-
rity, Herley only focuses on cybersecurity (we also use security and insecurity, in
this paper, only to refer to cyber-insecurity and cybersecurity) and his intuition
is that there is no scientific theory that can predict the cybersecurity of a sys-
tem, nor a theory that can predict all possible insecurities of a system (which,
by negation, may be used as a theory of cybersecurity). Herley then uses this
argument to show that “claims that any measure is necessary for security are

1 Einstein to Popper: “[...] and I think (like you, by the way) that theory cannot be
fabricated out of the results of observation, but that it can only be invented.” [15].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Zhou et al. (Eds.): ACNS 2022 Workshops, LNCS 13285, pp. 299–319, 2022.
https://doi.org/10.1007/978-3-031-16815-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16815-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-16815-4_17

300 M. Ambrosi et al.

empirically unfalsifiable”. The goal of this paper is to address this issue and to
lay the foundations of a scientific cybersecurity theory. We consider the problem
raised by Herley not confined to “computer security” but rather we reason on any
abstract system (so that our scientific hypothesis2 may be tested in any sound
implementation such as a network, a mechanical, cyber, or cyber-physical sys-
tem, or even a single computer or a single device such as a hard-drive). Instead
of starting from reasoning about what makes a system secure or insecure, we
reason about what causes insecurities. We focus on insecurities only caused by
the exploitation of cybersecurity attacks, and we assume that achieving cyber-
security means preventing all those attacks from being exploitable or exploited.
Our hypothesis is that cybersecurity attacks are only caused by the presence of
errors in the design or implementation of a system (i.e. cybersecurity weak-
nesses). With our approach, a list of weaknesses emerges from the mathematical
formulation of a system in a framework called ABF (as in Assertions, Beliefs,
Facts in [18])3 predicts 4 main classes of weaknesses. Those classes are used to
calculate all the insecurity configurations of all the components of a system,
obtaining a precise estimation of all potential cybersecurity-related risks in any
given system. Our hypothesis can be falsified by means of experiments, testing
if all the predicted weaknesses are present in the system under consideration,
or testing if other (not predicted by our hypothesis) weaknesses are present.
In fact, if any cybersecurity weaknesses were to be found in a system and not
predicted by our hypothesis, the hypothesis could be declared incomplete. If a
cybersecurity weakness would be predicted by our hypothesis but found to be
impossible to realize, our hypothesis could be declared as wrong.

2 Literature Review

Cybersecurity attacks seem to be related to the creativity of the attacker and
thus unpredictable. Currently, the most complete understanding of insecurity
issues is stored into a network of databases of weaknesses (e.g. CWE [3]), vul-
nerabilities (e.g. CVE [13], NVD [21]), and attacks (e.g. CAPEC [2], ATT&CK
[12]). Those insecurity issues can be related to the violation of one or more
requirements (explicit or implicit) in the specification, design or implementa-
tion of a system. The correlation between insecurity flaws and cybersecurity
requirements has been used to define standards such as the IEC 62443-1-3 (the
Industrial communication networks - Network and system security – Part 3-3:
System security requirements and security levels) which defines requirements
as “confidentiality of information in transit/at-rest”. More generally, the idea
of defining cybersecurity requirements as properties of a system was initially
defined in 1970s with the CIA triad (Confidentiality, Integrity, Availability) and

2 In the remainder of this paper, we will use the word hypothesis to refer to “scientific
hypothesis” as a proposed scientific theory that has not gone through an extensive
series of tests. We use “logical theory” to refer to a set of formal logical axioms.

3 Intuitively, as we will see later, assertions correspond to an exchange of information
between agents, beliefs to internal information considered true by the agent, and
facts to requirements.

The Etiology of Cybersecurity 301

refined over the decades introducing related concepts such as authenticity or
non-repudiation, or introducing new ones such as “responsibility” in the RITE
approach (see [17] for an overview of the evolution of the CIA triad). The link
between cybersecurity requirements and vulnerabilities is reported in the NVD
databases by the CVSS [11] scoring system. The CVSS evaluates of the sever-
ity of a vulnerability by means of different metrics (such as attack complexity
and user interaction) and quantitatively evaluates the impact on the CIA triad.
While cybersecurity requirements, weaknesses, vulnerabilities, and attacks have
been extensively studied and implemented both in academia and industry to pro-
vide tools for the testing or verification of systems, no scientific falsifiable theory
correlates cybersecurity requirements to necessary and sufficient conditions (e.g.
mitigations) to declare a system secure [7]. Nonetheless, the extensive body of
literature has scientific foundations, for example, providing formal frameworks
for the verification of properties for cybersecurity. As a driver for our argumen-
tation, we start by reviewing the key concepts in the cybersecurity domain.

2.1 Terminology

We provide a baseline for a definition of the terms that structure our current
understanding of cybersecurity.

Vulnerability. As defined in [14] (and adopted in [1]), is a “weakness in an infor-
mation system, system security procedures, internal controls, or implementation
that could be exploited by a threat source”.

Weakness. The definition given by the MITRE in [4] of weakness is: “ a type
of mistake that, in proper conditions, could contribute to the introduction of
vulnerabilities within that product. This term applies to mistakes regardless of
whether they occur in implementation, design, or other phases of a product life-
cycle.” A vulnerability, such as those enumerated on the Common vulnerabilities
and Exposures (CVE) List, is a mistake that can be directly used by an attacker
to gain access to a system or network. The definition is circular if we interpret
the word “error” and “mistake” with the same semantics: a weakness is an error
that leads to a vulnerability and a vulnerability is a mistake which, in turn, is a
weakness. The only difference between a weakness and vulnerability seems to be
that one can consider weakness as a ground term and state that a vulnerability
is caused by a weakness.

Exploit “[. . .] (from the English verb to exploit, meaning to use something to
one’s own advantage) is a piece of software, a chunk of data, or a sequence of
commands that takes advantage of a bug or vulnerability to cause unintended or
unanticipated behavior to occur on computer software, hardware, or something
electronic (usually computerized).” [8].

Attack. As defined by the International Standard ISO/IEC 27000, is an “attempt
to destroy, expose, alter, disable, steal or gain unauthorized access to or make
unauthorized use of an asset”; where an Asset is “anything that has value to
the organization”. We do not consider ethical hackers as attacking a system. In
fact, we consider the term hack as non-malicious (as, e.g. in [20]).

302 M. Ambrosi et al.

Fig. 1. Etiology of cybersecurity (left). Mapping epistemological concepts to (cyber-
physical) systems engineering (right).

Threat. As defined in [14], is “Any circumstance or event with the potential to
adversely impact organizational operations (including mission, functions, image,
or reputation), organizational assets, individuals, other organizations, or the
Nation through an information system via unauthorized access, destruction, dis-
closure, modification of information, and/or denial of service”.

As in Fig. 1, in order to define a theory on cybersecurity we may say that
the presence of vulnerabilities is a necessary condition to cause an attack in the
system. Those vulnerabilities are, in turn, caused by the presence of weaknesses
in the system. Weaknesses are errors in the design or implementation of a system
and a theory on cybersecurity should first predict the errors in a system design.

3 A Cybersecurity Hypothesis in the ABF-Framework

To address the problem raised by Herley, we define how to distinguish between a
secure and an insecure system in the following steps of the engineering process:

1. System Specification: the functional and physical requirements are defined.
2. Architecture Design: the specification is structured into functional and phys-

ical architectures.
3. Cybersecurity Risk Assessment : potential weaknesses (errors) and cybersecu-

rity requirements are identified.

We changed the focus from the attacker as the source of insecurity to the poten-
tial design errors of a system. We now define a framework for the definition of a
system that we use to identify weaknesses as potential design errors.

3.1 Mereo-Topological Reasoning

Following [18], we define a system as a hierarchy of agents. Furthermore, we
model an agent as a meronomy (a hierarchy of part-whole relations) over the
aforementioned constituents (assertions, beliefs, and facts), based on a standard
definition of mereology (i.e. based on the definition of parthood relation between

The Etiology of Cybersecurity 303

Table 1. RCC3 and RCC5 relations between regions X, Y and Z

RCC3 RCC5 Terminology Notation Definition

Connects with C (X ,Y) Reflexive and symmetric

Disconnected from ¬C (X ,Y) Irreflexive or antisymmetric

Part of P(X ,Y) ∀Z C (Z ,X) → C (Z ,Y)

Overlaps O(X ,Y) ∃Z P(Z ,X) ∧ P(Z ,Y)

� � Equal to EQ(X ,Y) P(X ,Y) ∧ P(Y ,X)

� Overlaps not equal ONE(X ,Y) O(X ,Y) ∧ ¬EQ(X ,Y)

� � DiscRete from DR(X ,Y) ¬O(X ,Y)

� Partial-Overlap PO(X ,Y) O(X ,Y) ∧ ¬P(X ,Y) ∧ ¬P(Y ,X)

� Proper-Part-of PP(X ,Y) P(X ,Y) ∧ ¬P(Y ,X)

� Proper-Part-of-inverse PPi(X ,Y) P(Y ,X) ∧ ¬P(X ,Y)

parts). Due to the necessity of considering different relations between parts (as we
will show afterwards) we extend the mereology to a mereo-topology [16,19,24],
considering the relations in Table 1. For the sake of readability, we use the term
region both to refer to a mereological part and to a topological region. Our
aim is to create a meronomy (hierarchy of part-whole relations) instead of the
taxonomies (categorization based on discrete sets) such as the one provided in
[13,21] so that we don’t need to rely on a scoring system (such as the CVSS) to
assign a quantitative evaluation of the cybersecurity of each entry. Instead, we
want a precise calculation of the number of insecure configurations of a system
to emerge from the mathematical formulation of our cybersecurity hypothesis.
A mereotopology, as defined in [16], is a mathematical structure where the basic
relation between regions is the reflexive and symmetric relation Connects With,
that we use to order a universe of agents Ag (see in Tab. 1). We use the Region
Connection Calculus (RCC), as defined in [6,9], to provide an axiomatization
of the mereo-topological concepts. In its broader definition, the RCC theory is
composed by eight axioms, and is known as RCC8 [6]. Using RCC5 instead
of RCC8 prevents us from considering tangential connections between spatial
regions. However, tangential connections in RCC8 can be considered as special
cases of the more general spatial relations considered in RCC5. In Table 1, we
summarize the axioms of the RCC (see, e.g., [6]). We can now define a system
over the mereotopology using the RCC calculus, as follows, where rcc(X,Y) on
two generic regions X,Y represents one of the possible RCC relations between
X and Y . We note that all the RCC relations are symmetric with the exception
of those that have an explicit (related) inverse.

Definition 1. System State – A Cyber-Physical System (CPS), or a sub-
system, state is defined as a tuple s = 〈rcc(F ,B), rcc(F ,A), rcc(B,A)〉, where
A,B, and F are regions of assertions, beliefs (i.e. the beliefs generated by the
behavior), and facts respectively, expressed as requirements.

As in [18], it follows that, by defining a system as a fixed number of regions,
there exists an upper-bound to the number of possible configuration of a sys-
tem, defined by the possible relations between the different regions. The general

304 M. Ambrosi et al.

Fig. 2. Cybersecurity risk for a single agent (left). Example relation between facts, and
assertions and beliefs (right).

Table 2. RCC5 composition table over 3 regions generates the ideal risk matrix (green
the low-risk state, red the high-risk state, and a gradient of intermediate risk states).
T(A,F) = {DR(A,F), PO(A,F), PP(A,F), PPi(A,F), EQ(A,F)}

DR(A,B) PO(A,B) PP(A,B) PPi(A,B) EQ(A,B)

DR(B,F)

DR(A,F)

DR(A,F)

DR(A,F)

T(A,F) PO(A,F) DR(A,F) PO(A,F) DR(A,F)

PO(B,F)

DR(A,F) DR(A,F) PO(A,F)

PO(A,F) T(A,F) PO(A,F) PPi(A,F) PO(A,F)

PP(A,F) PP(A,F)

PP(B,F)

DR(A,F) PO(A,F)

PO(A,F) PO(A,F) PP(A,F) EQ(A,F) PP(A,F)

PP(A,F) PP(A,F) PP(A,F)

PPi(A,F)

PPi(B,F)

DR(A,F)

DR(A,F) PO(A,F) T(A,F) PPi(A,F) PPi(A,F)

PPi(A,F)

EQ(B,F) DR(A,F) PO(A,F) PP(A,F) PPi(A,F) EQ(A,F)

formula to calculate the number of different types of agents is r(
n
k), where r is

the number of relations with arity k, between n different regions. In our case,(
n
k

)
= 3 since we consider 3 regions (A, B, and F), and all the relations consid-

ered in the RCC are binary. Hence, we have up to 125 different types of agents
but only 54 of the 125 (as showed in [6]) combinations are topologically correct.
For RCC5 there are 53 = 125 theoretical combinations but only 54 are correct
with respect to the axioms.

In the quantitative evaluation of a single agent, as in Fig. 2, we argue that
only 1 configuration represents the nominal (expected) behavior of the agent
while the other configurations are either impossible to implement or diverge
from the intended nominal behavior. We note that the numbers reported here
do not consider the details of the engineering process and should be considered
a limit of an abstract representation of the system.

The Etiology of Cybersecurity 305

3.2 Qualitative Evaluation of Agent Space in A,B,F
While a quantitative analysis reveals how many possible configurations of an
agent (i.e. a system) exist w.r.t. the ABF-framework (e.g., 54/125 in RCC5), a
qualitative analysis of the different configurations describe the configurations
allowed by the ABF-framework, and how those configurations can be cate-
gorized. In Table 2, we provide the generic composition table of RCC5 over 3
regions instantiated over A,B,F , which shows the whole state space for a single
agent. The color coding of the table represents the cybersecurity risk related to
a generic agent, the risk is highest on the top left corner of the matrix, lowest
on the bottom right corner. In Fig. 2, the relation between facts, and assertions
and beliefs (as inputs and outputs of the behavior of an agent) is illustrated.
Assertions and beliefs generated by the design of a system may not be exactly
aligned with what the facts mandate (i.e. what the specification mandates). The
relation between facts, and assertions and beliefs can be used as a metric to
determine the soundness of the design with respect to the specification. We now
analyze the relations between each pair of regions (i.e., A,B,F). For the sake of
simplicity, soundness is opposed to non-soundness in the following, however, with
the RCC, one could consider different “degrees” of non-soundness. For example,
in RCC5, if we consider EQ between two regions as representing soundness, DR
over the same regions represents “total” non-soundness; while PP, PO, and PPi
each represent different degrees of non-soundness. A similar argument can be
done for completeness.

rcc(A,B) – Collaboration. By definition, assertions are defined as transfer of
information between two agents. An agent has two main categories of assertions,
input and output assertions. Given an agent a and a collection of asserted pred-
icates Φ, the input assertions are those received by a from an agent s acting as
a sender, As→aΦ; similarly, output assertions are sent from a to a receiver r,
Aa→rΦ. With a slight abuse of notation, in the text we drop the Φ when the
content of the assertions is not relevant. We shall consider two pairs of regions:

– rcc(As→a,B), where the relation between input-assertions and beliefs
describes the soundness of the execution of the functional architecture w.r.t.
input elicitation. If all the inputs (assertions) are correctly handled in the
functional specification (beliefs) the specification is complete.

– rcc(Aa→r,B), where the relation between behavior and outputs describes the
completeness of the behavior defined in the specification w.r.t. the input elic-
itation. If all the outputs (assertions) of the functional architecture can be
produced, the functional architecture is complete.

rcc(A,F) and rcc(B,F) – Honesty and Competence. The relation of assertions
and beliefs with facts determines the quality with respect to the nominal (spec-
ified) system. Given that facts define what needs to be true in the system, the
relation of assertions and facts determines the degree of quality between the real
information circulating in a system (or within an agent) and the one specified.

306 M. Ambrosi et al.

Since the transfer of information through assertions generates beliefs, a dishon-
est agent may circulate false information, generating false beliefs. The relation
between beliefs and facts determines the competence (on the subjects defined
by the facts) of an agent (i.e. the more competent an agent is, the more likely a
belief of that agent is true).

A,B,F CyberSecurity Enumeration (CSE). The following cybersecurity
requirement for a CPS specification can be summarized:

CSE-1 Proper interaction between correctly-behaving agents is defined as
EQ(Aa,Ba) for an agent a, and can be detailed as follows when multiple
agents are considered.

CSE-1.1 The equality relation EQ(As→a,Ba) describes the intended secure
behavior as: the beliefs generated by the behavior of the functional
architecture shall be complete w.r.t. the specified inputs of the agent.
Therefore, the assertions received by an agent or a system shall be
compliant with the expected inputs of the functional architecture.

CSE-1.2 Similarly, the equality relation EQ(Aa→r,Ba) defines that the out-
puts of an agent a shall be the outputs of the functional architecture.

CSE-2 The proper adherence of the data transmitted between agents with
respect to requirements, is defined as EQ(A,F).

CSE-3 The proper adherence of the behavior (in terms of input and output
beliefs) with respect to requirements is defined as EQ(B,F).

We note that our CSE define the properties of a secure system, and correlated
weaknesses can be found in the CWE dataset. For example, CSE-1 can be seen
as correlated to the weakness class of “Improper Interaction Between Multiple
Correctly-Behaving Entities” defined by the CWE–435, CSE-2 with the “Insuf-
ficient Control Flow Management” defined by MITRE in the CWE–691, and
CSE-3 with the “Improper Calculation” defined by MITRE in the CWE–682.
All those CWE are in the top “view” of the “research concepts” in [3], while the
other classes of weaknesses do not have a direct counterpart in our hypothesis;
we believe they can be seen as sub-classes, but a full comparison with the CWE
is out of the scope of this article. We can now define what a secure system is
(with respect to the ABF-framework) and, based on that definition, what the
cybersecurity risk is and how to quantify it in a risk matrix. The following def-
inition holds for abstract systems defined in the ABF-framework but will be
refined for CPS afterwards in the paper.

Definition 2. Cybersecurity of a System or an Agent – A secure system
is a system where CSE-1, CSE-2, and CSE-3 holds for each agent of the system.

The ISO 31000 consider risk as the “effect of uncertainty on objectives” and
refers both to positive and negative consequences of uncertainty. Accordingly,
we consider risk as follows.

Definition 3. Risk – The risk is the uncertainty related to the whole space of
potential designs resulting from a specification in the ABF-framework.

The Etiology of Cybersecurity 307

The definition of Risk leads to the risk matrix in Table 2, defined as follows.

Definition 4. Risk Matrix – The risk matrix, as summarized in Table 2, is
a function of the three relations s = 〈rcc(F ,B), rcc(F ,A), rcc(B,A)〉, where the
maximum risk is defined by the DR relation between the three groups of regions,
and the minimum risk by the EQ relation over the same regions. In between the
two extremes, the granularity of possible intermediate configuration is defined by
the calculus used (RCC5 in our case).

While a risk matrix is often defined as a function of the likelihood and impact
of attacks (based on quantitative ad-hoc estimation of how likely it is that an
attacker will exploit one or more vulnerabilities and what is the magnitude
of the incidents produced by this exploitation), we suggest that cybersecurity
weaknesses are all equally likely to be exploited if there’s a connection between
the weakness and the asset that an attacker wants to impact. When the whole
system is considered an asset, all weaknesses are equally likely to be exploited.
Therefore, a risk matrix should capture the number of insecure configurations
of a system, rather than predicating over likelihoods of weaknesses exploitation.

4 Prediction of Cybersecurity Weaknesses

Several standards mandate a secure-by-design approach in which cybersecurity
shall be considered at the very early stages of the design process. Standards do
not describe in detail how to perform a cybersecurity risk assessment and only
vaguely define the overall objective, which can be summarized as to provide
an understanding of the potential cybersecurity risks. All the methodologies
and tools we reviewed (e.g. Threatmodeler [22], CORAS [10], SECRAM [5])
rely on the expertise of the person who performs the risk assessment for the
identification of threats and for the quantitative estimation of risks. In contrast,
in this section, we define how to specify a CPS in the ABF-framework and we
identify a cybersecurity metric.

4.1 From Multi-agent to Cyber-Physical Systems

As in Fig. 1, we relate MAS (Multi-Agent System) and CPS as follows.

– We consider a System as a hierarchy of agents. So, we map agents to systems,
sub-systems, or devices, depending on the granularity of the design. For exam-
ple, a modeler can model a specific device as a system not decomposed into
sub-systems or devices (and the device is considered as an agent).

– Agents reason over beliefs (i.e. transform beliefs into other beliefs) and each
component of a CPS (system, sub-system, or device) is composed by a func-
tional architecture that transforms input-beliefs into output-beliefs.

– Components of a CPS have ports to exchange information with the outer
environment (which may be a sub-system), similarly to agents. The transfer
of information in a CPS is defined by channels.

– The concept of facts is related to the requirements that describe how the CPS
shall behave and its physical architecture.

308 M. Ambrosi et al.

Input and Output Ports. Since the ABF-framework is a theory of agents, we
could consider ports as agents that allow the exchange of information between a
channel and another agent. However, we considered a port as a special type
of agent to avoid an infinite regress, as described in the following. While a
channel transfers information between agents, and a functional architecture pro-
cesses information, a port is simply a connector between a channel and a func-
tional architecture. One, however, may argue that a similar connection is needed
between a channel and the port itself. While this is not excluded by the ABF-
framework, it would obviously lead to an infinite nested structure of ports. To
avoid this infinite structure, we assume that a port doesn’t require any other
means to transfer information from/to a channel or from/to a functional archi-
tecture.

Definition 5. Input or Output Port – A port forwards information from the
outside of an agent’s boundary to the inside (input-port) or vice versa (output-
port). There exist two types of ports with the following behavior: an input-port
transforms assertions from a sender s (As→a) to beliefs of an agent a (Ba), while
an output-port transforms beliefs into assertions.

The quality of a port is determined by the rcc relation between the asser-
tions received or sent and the belief, i.e. rcc(As→a,Ba) for input-port or
rcc(Aa→r,Ba), for output-port. A port is, in fact, syntactic sugar to express
the relation between assertions and beliefs. We note that the definition of an
input/output port can be considered “secure”, meaning that we implicitly formu-
lated the requirement that a port always forwards the information without modi-
fying it in any way. This is assumed since we defined a port as if the RCC equality
relation holds between the input/output assertions and the input/output beliefs.
In contrast, assuming any other RCC relation between inputs and outputs of a
port can be considered as generating a weakness.

Port Weaknesses. We now apply the ABF-framework to list all possible cyber-
security weaknesses of a port. From our definition of ports, the following holds.

Theorem 1 (Port Weaknesses). There exist only the following six types of
weaknesses, generating six types of insecure port in RCC5:

W1) Replace port, where assertions reach the port but are replaced with different
and un-related information before passing the boundary.

W2) Drop port, where assertions reach the port but do not pass the boundary of
the agent (i.e. do not become belief of the agent).

W3) Insertion port, where new information is transferred along with the infor-
mation incoming from a channel, and then sent to the recipient (agent).

W4) Injection port, where part of the incoming information is substituted with
new information and transferred to the intended recipient.

W5) Selective port, where some information passes the port and part is either:
(W5.1) Dropped or (WP5.2) Replaced.

The Etiology of Cybersecurity 309

Proof. An input port is, in the ABF-framework, defined secure as long as the
relation between the two regions of input assertions A and output beliefs B are
equal, i.e. EQ(A,B). Therefore, any other relation should result in a weakness
(related to an insecurity flaw) of that input port. Using RCC5, there exist exactly
other 4 different types of relations, one of which is the discrete-from (DR) rela-
tion, i.e. DR(A,B). When two regions are related by the DR relations, they have
no subregion in common. Let us define a function weight |X| such that, for any
region X, it represents the smallest possible cardinality of a (mereo)topological
base for X; where a base is a collection of regions in a (mereo)topology such that
every region can be written as union of elements of that base. We distinguish
between regions that are related to information and regions that are not (i.e.,
regions A such that |A| = 0) by writing the latter as ∅.

1. If EQ(A,B) then either A = B = ∅ (no communication) or A = B �= ∅
(forward communication).

2. If DR(A,B) then A = ∅ ⊕ B = ∅ (we call insert the former, full drop the
latter case), or A �= ∅ ∧ B �= ∅ ∧ A �= B called replace (i.e. drop and insert).

3. If PP (A,B) then B contains and extend A which we call insertion.
4. If PPi(A,B) then A contains and extend B which we call drop (or selective

drop to stress the difference with the full drop).
5. If PO(A,B) then a part of the A is contained in the B which is a combination

of selective drop and generation which we call injection.

Communication Channels. In this work, we only consider mono-directional chan-
nels and communication but the extension to bi-directional channel can be con-
sidered as the union of two unidirectional channels. A mono-directional channel
is defined by the assertions sent or received (over the channel). We consider first
the difference between a (communication) mono-directional channel (channel
from now on) and an agent, as we did for the ports, since the ABF-framework is
a logical theory of agents. In fact, if a channel were considered an agent (channel-
agent) then the question would be how an agent would transfer its assertions
to the channel-agent. If the channel between the agent and the channel-agent
is again an agent, we would generate an infinite regress. Therefore, we do allow
channel-agents but we assume a finite depth (of detail) for a channel, where there
exists a bottom-channel which is not an agent. For now, we do not constrain a
channel-agent in any way so there is no difference between a channel agent and
agent. Therefore, we consider channels to be bottom-channels, defined as agents
with the pre-defined behavior (i.e. defined in an axiomatic way) of forwarding
any input-assertion as output-assertion, without modifying it.4

Definition 6. Mono-directional Channel (bottom-channel) – A mono-
directional channel between two agents (s → r) is an agent whose behavior is
defined as: to forward any assertion received from s over an input-port, to the
output-port where r is listening to.
4 Nothing prevents us from introducing additional constraints to the channel as storing

assertions that are transferred over the channel, or filter out some input-assertions.

310 M. Ambrosi et al.

The quality of a mono-directional channel is defined as the rcc relation between
the assertions of the sender and the ones received by the receiver, i.e. rcc(As,Ar).

Channel Weaknesses. Given that a mono-directional bottom-channel is assumed
to be perfectly forwarding any assertion (as we assumed for ports) from its input-
port to its output-port, there is no insecure behavior but only the combination of
the weaknesses of the input and output port; therefore there exist (72) − 1 = 48
theoretical configurations (72 because there are 6 insecure types of port – see
Theorem 1 – plus 1 secure type, on both input and output side; and we exclude
the configuration with 2 secure types as input and output, hence the −1); where
only 44 are possible.

W6) Secure output port and input drop port.
W7) Secure output port and input insertion port.
W8) Output drop port and input drop port.
W9) Output drop port and input insertion port.

W10) Output drop port and input secure port.
W11) Output injection port and input secure port.

For the sake of readability, we reported 6 examples but the proof by exhaus-
tion (up to W49) over all the possible cases is straightforward.

Cybersecurity Weaknesses – The RIDI-Hypothesis. All the results of the appli-
cation of the ABF-framework to channels (the analysis of the RCC relations
between output and input assertions of an agent) lead to the same results of
the analysis of a pair of an input and output port. So far we have consid-
ered information generated by a port PI and then sent through a channel C
to another (recipient) port PO. In this scenario, where ports and channels are
atomic (otherwise raising infinite regress), we can only consider the relations
between ports and channel; considering both input-port to channel and channel
to output-port. In fact, the weaknesses of a channel are defined in terms of the
weaknesses of ports. The same result can be obtained by analyzing the relation
between the outputs of a functional block and the inputs of another functional
block, where functional blocks are constituents of the functional architecture
as described afterwards. To define a functional block without encountering an
infinitely recursive definition, we must reach the same conclusions as for the
channel. So, describing the information as flowing over a channel or in a func-
tional block is purely syntactic sugar. We can summarize these results by saying
that the relations between assertions and beliefs, output assertions of an agent
and input assertions of another agent, or output beliefs of a functional block and
input beliefs of another block can only be affected by the following weaknesses:
replace, drop, injection, insertion, selective drop, and selective drop + insertion.
We call this the RIDI-Hypothesis, being the four main categories of weaknesses:
Replace, Insertion, Drop, Injection. We can, then, deduce the following cyber-
security properties to mitigate cybersecurity weaknesses of a port or a channel
(between ports, functional blocks, or both).

The Etiology of Cybersecurity 311

– Order-preserving – it shall be known if information is replaced.
– Availability – it shall be known if information is dropped or selectively dropped.
– Integrity – it shall be known if information is injected.
– Authentication – it shall be known if information is inserted.

Functional Architecture. A functional architecture takes information as input-
beliefs and transforms the information into output-beliefs. Those transforma-
tions occur within the functional architecture, where functional blocks transform
beliefs into other beliefs. Similarly to channels, we could consider a functional
block as a functional architecture occurring in an infinite regress. Therefore, we
consider functional blocks as executing an abstract undefined behavior, of which
we only observe the inputs and the resulting outputs (beliefs).

Definition 7. Functional Block and Architecture – A functional block of
an agent takes beliefs as inputs (input-beliefs) and returns output-beliefs. A func-
tional architecture is an interconnected system of functional blocks.

The quality of a functional block cannot be determined by the difference between
its inputs and outputs (as we did for ports and channels), because the behavior of
a functional block cannot be determined in general; since any functional block
will have its own purpose based on functional requirements. Therefore, while
the semantics of a port is determined by the relation between assertions and
beliefs, the semantics of a functional block is determined by the relation between
facts/requirements and I/O beliefs. In other words, a functional block is a generic
agent with no pre-defined general behavior (while ports and channels have a pre-
defined behavior). In the following, for the sake of simplicity, we use the generic
region B to refer to the behavior (i.e. the beliefs generated by the behavior).

W50) PO(B,F) the component has a Byzantine behavior. Not all the inputs
are handled properly, nor all the expected outputs are always generated
when correct inputs are given.

W51) PP (B,F) some expected outputs are not generated with the correct
inputs.

W52) PPi(B,F) the components correctly perform the expected behavior when
the correct inputs are provided but is subject to input injections.

W53) DR(B,F) the component never performs the expected behavior (e.g.
physical damage).

Requirements as Facts. During the specification phase, for any agent, channel,
port, functional block and architecture, there may exist a requirement (fact)
predicating over them. In other words, any requirement is defined as a fact since
they must be true in any design or implementation. As in Sect. 4 and depicted
in Fig. 2, facts are definitory rules that define how the system shall behave (by
specification), while reality may be shown to be insecure (i.e. diverging from the
expected behavior). As an example, considering a functional block that performs
the summation of two inputs defined by the requirement r := b3 = b1+b2 for any
b1 and b2. The possible relations between the beliefs generated by the behavior

312 M. Ambrosi et al.

of the functional block and the requirements (i.e. rcc(B,F) is determined by
the relations between the I/O beliefs sum(b1, b2) = b3 and the requirement
sum(b1, b2) = b1 + b2, as follows.

– EQ(B,F) = EQ(B3,B1+2), where B3 represents the region of the outputs
of sum while B1+2 the expected outputs of an ideal implementation of the
requirement r. The functional block correctly implements the requirements.

– DR(B,F) = DR(B3,B1+2), the functional block does not implement the
requirements.

– PP (B,F) = PP (B3,B1+2), the block produces incorrect outputs for some
inputs.

– PPi(B,F) = PPi(B3,B1+2), not all outputs result from a summation of two
inputs (but with the expected inputs the function outputs correctly).

– PO(B,F) = PO(B3,B1+2), Byzantine behavior where occasionally outputs
are produced with the correct inputs. Not all the inputs are handled properly,
nor all the expected outputs are generated when correct inputs are given.

Assertions and Facts. The whole reasoning on the relation between beliefs and
facts can be duplicated for the relation between assertions and facts; we cannot
appreciate the difference at this level of abstraction. If the functional architec-
ture would be extended to capture the semantics (i.e. the logic) of the commu-
nication and cybersecurity protocols, with the relation between assertions and
facts we would compare protocol logics with the requirements. We won’t con-
sider the verification of the functional architecture and protocol logic in this
paper since we focus on the architecture specification step of the engineering
process without going into the design of the behavior of agents. We summa-
rize our results by categorizing the weaknesses predicted by our hypothesis into:
data-flow-related and functionality-related weaknesses; as in Table 3. Functional
weaknesses can be seen as a general formulation of our hypothesis, while data-
flow weaknesses as an application of our hypothesis to components with defined
behavior/requirements.

4.2 Security and Insecurity of a System

We are ready to state our main hypotheses.

Hypothesis 1 System Security Design – A system security design (in the
ABF-framework) is given by a precise system specification over the physical and
functional architectures that uniquely defines the design to be built on top of
those requirements.

Hypothesis 2 System Insecurity Design – If, given a system specification
as a collection of requirements, there exist a non-unique design with respect to
those requirements, the number of possible designs that fulfill the requirements
quantitatively defines the magnitude of insecurity of a system design with respect
to the specification.

The Etiology of Cybersecurity 313

Table 3. Weaknesses categorization

RCC5 Quantity: data flow Quality: requirements adherence

EQ Expected/Nominal Expected/Nominal

DR Drops all inputs and
inserts new data

The component never performs/carries the
expected behavior/information

PP Selectively drops inputs Part of the expected outputs are not
generated in response to the correct inputs

PPi Forwards all the inputs
but crafts and inserts
new malicious data

The components correctly performs/carries
the expected behavior/information when
the correct inputs are provided but is
subject to input injections

PO Selectively drops inputs
and inserts new data

Byzantine behavior. Occasionally outputs
the expected output given the correct
inputs. Not all inputs are handled properly,
nor all expected outputs always generated
on correct inputs

Based on these hypothesis, we can formulate the concepts of security and
insecurity (in the ABF-framework) as mathematical equations. Let us consider
a CPS S, represented as a graph G = 〈V,E〉 where V represents the set of
functional blocks and ports of S, and E ⊆ V × V is the set of pairs representing
the channels and connections (data flows) between functional blocks. We define
R ⊆ V × F , where F is the set of all the requirements of S, and extend G as
G′ = 〈V ′, E′〉 with V ′ = V ∪ F and E′ = E ∪ R. Let π : E′ → RCC (where
RCC is the set of relations in the RCC) be the total function associating an RCC
relation to each edge in G′, and Π be the set of all different permutations of
RCC relations over E′ (i.e. Π = {〈π(e0) = EQ, . . . , π(en) = EQ〉, . . . , 〈π(e0) =
DR, . . . , π(en) = DR〉} where ei ∈ E′ for 0 ≤ i ≤ n and |E′| = n). If σ :
Π → {0, 1} is an evaluation function such that σ(p) = 1 (where p ∈ Π) iff
the input configuration is satisfiable with respect to the logical theory defining
the algebraic structure (mereotopology) and constraints of the calculus RCC
(otherwise σ returns 0),5 we define:

I =
∑

p∈(Π\πeq)

σ(p)

Here, πeq ∈ Π is the output of the function π that associates only EQ relations
to any e ∈ E′, and I ∈ N represents all the insecurity configurations of the CPS
S where, at least, one of the RCC relations isn’t EQ. In other words, we consider
πeq as the only secure configuration.

5 In other words, σ returns 1 if and only if a configuration is satisfiable with the respect
to the axioms of the RCC.

314 M. Ambrosi et al.

Fig. 3. Cybersecurity risk assessment tool

4.3 Cybersecurity Risk Assessment

To test our hypothesis we implemented a tool-chain (open-source with AGPLv3
license, available at [23]) for the identification of weaknesses and the calculation
of potential insecure configurations. The engineering of the ABF-framework for
CPS is summarized in the UML Class diagram in Fig. 6 (in appendix). As in
Fig. 3, the cybersecurity risk assessment process starts with the definition of
the use cases and architectural requirements. In our process, the specification is
manually translated into a UML design where:

– A deployment diagram describes the physical architecture. Each agent is
defined as an UML node with (physical) ports, and agent’s ports are con-
nected via UML information flow connectors, representing the physical chan-
nel.

– A functional architecture is linked to each agent in the deployment diagram
and is defined by an object diagram. The object diagram is composed by
instances of functional blocks, connected via information flow connectors.

– The connection between the two diagrams is implemented by “sockets”, func-
tional blocks connected to a physical port.

The tool generates a graph-like structure which represents the specification
(ABF-graph). The ABF-graph defines the system as a number of regions of
assertions, beliefs, and facts. Those regions are connected by a generic relation
which is evaluated as follows (according to the formula in Sect. 4.2). The graph
is translated into a logical formula that represents the specification in the ABF-
framework and, along with the axiomatization of the RCC5 calculus, is given
as input to the Z3 SMT solver. The solver identifies all possible configurations
of the system and, in turn, identifies all potential weaknesses. The ABF-graph
can be viewed as PDF and the results are reported into an spreadsheet file. The

The Etiology of Cybersecurity 315

Fig. 4. Sensor board object (left) and water level reader deployment (right) diagrams.

spreadsheet file also reports the total number of configurations as indicating the
cybersecurity risk associated to the specification. A user can change the status
of each weakness in the spreadsheet file from the default status (open) to “mit-
igated” and the risk is re-calculated on-the-fly, i.e. without the need of running
the tool again, based on annotations and formulas in the spreadsheet file. In our
approach, cybersecurity requirements are not imposed by the specification but
are automatically extracted by our tool as mitigations to potential weaknesses,
which are related to the insecure configurations of the specified system.

Case Study. We report here the results of the evaluation of a water level reader
(sensor ad-hoc example). As in Fig. 4 (left), we defined 2 agents: sensorInTank
and sensorBoard, as the physical reader that needs to be placed in a tank, and
the board that interprets the readings and outputs them as signals. The two com-
ponents are connected by a wire. In Fig. 4 (right), we report the functional archi-
tecture that receives the incoming communications from the sensor in the tank
and communicates them encrypted. The tool (Appendix B) reports 16777216
scenarios in which at least one component diverge from the specification.

5 Conclusion and Future Work

We proposed a hypothesis for a foundational theory on security, arguing that
cybersecurity-related issues are not linked to the maliciousness of an agent but
to the vagueness in the design processes. We provided a prototype tool for the
quantitative estimation of the cybersecurity risk based on a UML model of a
system. The verification and test-case generation will be our next steps.

316 M. Ambrosi et al.

A Class Diagram for ABF-Framework

The Class Diagram for the Engineering of the ABF-framework is reported in
Fig. 6. A specification of a CPS is viewed as an aggregation of architectures
which can describe the functional or physical requirements. The physical com-
ponents of the architecture are input/output ports and channels (aggregations of
pairs of ports) while functional blocks are the only constituents of the functional
architecture. All of the classes are abstract except input/output ports and func-
tional blocks. Therefore, agents (which represents sub-systems or components)
are composed by ports and functional blocks, as an aggregation of architectures.

B Overview of the Results of the Tool

In Fig. 5 we show a screenshot of the results reported by our tool.

Fig. 5. Partial View of the results in the spreadsheet file

The Etiology of Cybersecurity 317

F
ig
.
6
.
AB

F-
fr

a
m

ew
o
rk

fo
r

C
P

S
d
es

ig
n

–
C

la
ss

D
ia

g
ra

m

318 M. Ambrosi et al.

References

1. Blank, R.M., Gallagher, P.D.: NIST special publication 800-53 revision 4 - security
and privacy controls for federal information systems and organizations. National
Institute of Standards and Technology Special Publication, April 2013

2. Common attack pattern enumeration and classification. https://capec.mitre.org/
3. CWE view: Research concepts. https://cwe.mitre.org/data/definitions/1000.html
4. FAQ - what is the difference between a software vulnerability and software weak-

ness? https://cwe.mitre.org/about/faq.html#A.2
5. de Gramatica, M., Labunets, K., Massacci, F., Paci, F., Tedeschi, A.: The role of

catalogues of threats and security controls in security risk assessment: an empirical
study with ATM professionals. In: Fricker, S.A., Schneider, K. (eds.) REFSQ 2015.
LNCS, vol. 9013, pp. 98–114. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16101-3 7

6. Grütter, R., Scharrenbach, T., Bauer-Messmer, B.: Improving an RCC-derived
geospatial approximation by OWL axioms. In: Sheth, A., et al. (eds.) ISWC 2008.
LNCS, vol. 5318, pp. 293–306. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88564-1 19

7. Herley, C.: Unfalsifiability of security claims. Proc. Natl. Acad. Sci. (PNAS)
113(23), 6415–6420 (2016)

8. Wikipedia Foundation Inc., Exploit (computer security), 18 March 2022. https://
en.wikipedia.org/wiki/Exploit (computer security)

9. Lin, T.Y., Liu, Q., Yao, Y.Y.: Logics systems for approximate reasoning: approx-
imation via rough sets and topological spaces. In: International Symposium on
Methodologies for Intelligent Systems (1994)

10. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The
CORAS Approach. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12323-8

11. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to the common vulnerabil-
ity scoring system version 2.0. In: FIRST-Forum of Incident Response and Security
Teams, vol. 1, p. 23 (2007)

12. MITRE. Att&ck. https://attack.mitre.org/
13. MITRE. Common vulnerabilities and exposures (CVE). https://cve.mitre.org/
14. Committee on National Security Systems (CNSS). Glossary no 4009. National

Information Assurance (IA) Glossary, 06 April 2015. https://rmf.org/wp-content/
uploads/2017/10/CNSSI-4009.pdf

15. Popper, K.R.: The Logic of Scientific Discovery. New York, London (1959)
16. Rachavelpula, S.: The category of mereotopology and its ontological consequences.

In: Neaton, M., Peter, P. (eds.) University of Chicago Mathematics Research Pro-
gram (2017)

17. Samonas, S., Coss, D.: The CIA strikes back: redefining confidentiality, integrity
and availability in security. J. Inf. Syst. Secur. 10(3) (2014)

18. Santacà, K., Cristani, M., Rocchetto, M., Viganò, L.: A topological categorization
of agents for the definition of attack states in multi-agent systems. In: Proceedings
of the European Conference on Multi-Agent Systems and Agreement Technologies
(EUMAS), pp. 261–276 (2016)

19. Smith, B.: Mereotopology: a theory of parts and boundaries. Data Knowl. Eng.
20(3), 287–303 (1996). Modeling Parts and Wholes

20. Stallman, R.: The hacker community and ethics: an interview with Richard M.
Stallman (2002). https://www.gnu.org/philosophy/rms-hack.html

https://capec.mitre.org/
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/about/faq.html#A.2
https://doi.org/10.1007/978-3-319-16101-3_7
https://doi.org/10.1007/978-3-319-16101-3_7
https://doi.org/10.1007/978-3-540-88564-1_19
https://doi.org/10.1007/978-3-540-88564-1_19
https://en.wikipedia.org/wiki/Exploit_(computer_security)
https://en.wikipedia.org/wiki/Exploit_(computer_security)
https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1007/978-3-642-12323-8
https://attack.mitre.org/
https://cve.mitre.org/
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://www.gnu.org/philosophy/rms-hack.html

The Etiology of Cybersecurity 319

21. National Institute of Standards and Technologies (NIST). National vulnerability
database. https://nvd.nist.gov/

22. Threatmodeler. Threatmodeler. https://threatmodeler.com/
23. V-Research. V-research cybersecurity repository. https://github.com/v-research/

cybersecurity
24. Varzi, A.C.: On the boundary between mereology and topology. In: Proceedings of

the International Wittgenstein Symposium, pp. 261–276 (1994)

https://nvd.nist.gov/
https://threatmodeler.com/
https://github.com/v-research/cybersecurity
https://github.com/v-research/cybersecurity

	Preface
	Organization AIBlock 2022 Fourth Workshop on Application Intelligence and Blockchain Security 21 June 2022
	AIHWS 2022 Third Workshop on Artificial Intelligence in Hardware Security 21 June 2022
	AIoTS 2022 Fourth Workshop on Artificial Intelligence and Industrial IoT Security 23 June 2022
	CIMSS 2022 Second Workshop on Critical Infrastructure and Manufacturing System Security 20 June 2022
	CLOUD S&P 2022 Fourth Workshop on Cloud Security and Privacy 22 June 2022
	SCI 2022 Third Workshop on Secure Cryptographic Implementation 23 June 2022
	SecMT 2022 Third Workshop on Security in Mobile Technologies 20 June 2022
	SiMLA 2022 Fourth Workshop on Security in Machine Learning and its Applications 22 June 2022
	Contents
	AIBlock – Application Intelligence and Blockchain Security
	Universal Physical Adversarial Attack via Background Image
	1 Introduction
	2 Background and Related Work
	2.1 Object Detection
	2.2 Physical Adversarial Attacks
	2.3 Adversarial Attacks Using Contextual Information

	3 Method
	3.1 Objective Function
	3.2 The Generation of the Universal Background Image

	4 Experiments
	4.1 Experiment Setup
	4.2 Attack Success Rate
	4.3 The Effect of Angle and Distance
	4.4 The Effect of Target Model
	4.5 Visualized Results

	5 Conclusion
	References

	Efficient Verifiable Boolean Range Query for Light Clients on Blockchain Database
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Blockchain Data Structure
	2.2 B+-Tree
	2.3 Constant Size Polynomial Commitment

	3 Problem Statement
	3.1 System Model
	3.2 Threat Model and Assumptions

	4 Polynomial Commitment B+-Tree
	4.1 Overview
	4.2 PCB-Tree Structure on Blockchain

	5 The Proposed Construction
	5.1 Verifiable Range Query Processing
	5.2 Extension to Verifiable Boolean Query
	5.3 Security Analysis

	6 Performance Evaluation
	6.1 Experiment Setting
	6.2 Experiment Evaluation

	7 Conclusion
	A Pseudo Codes of the PCB-Tree Algorithms
	References

	SuppliedTrust: A Trusted Blockchain Architecture for Supply Chains
	1 Introduction
	2 Background
	2.1 Current State of Supply Chains
	2.2 Cybersecurity Standards

	3 Related Work
	4 Framework
	4.1 Overview
	4.2 Governance Layer
	4.3 Supply Chain Layer
	4.4 Blockchain Layer
	4.5 Use Cases

	5 Threats
	5.1 Web3 Vulnerabilities
	5.2 Smart Contract Attacks
	5.3 Consensus Attacks

	6 Challenges
	6.1 Layer-1 Solutioning
	6.2 Layer-2 Solutioning
	6.3 IT/OT Integration

	7 Conclusion
	References

	Towards Interpreting Vulnerability of Object Detection Models via Adversarial Distillation
	1 Introduction
	2 Related Works
	2.1 Interpretable Adversarial Examples
	2.2 Object Detection
	2.3 Adversarial Examples
	2.4 Distillation

	3 Methodology
	3.1 Definitions
	3.2 Framework
	3.3 Extracting Adversarial Features
	3.4 Adversarial Distillation

	4 Experiments
	4.1 Setup
	4.2 Generating Adversarial Examples
	4.3 Evaluation on Adversarial Distillation

	5 Conclusion
	References

	Vulnerability Detection for Smart Contract via Backward Bayesian Active Learning
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Related Work
	2.1 Smart Contract Vulnerability Detection
	2.2 Active Learning

	3 The Proposed Method
	3.1 Overview
	3.2 Feature Extraction
	3.3 Active Learning with Uncertainty Measure
	3.4 Active Learning with Backward Noise Removing

	4 Experiment
	4.1 Experiment Set and Benchmark Detaset
	4.2 Performance Indicators
	4.3 Experimental Results

	5 Conclusion and Future Work
	References

	A Multi-agent Deep Reinforcement Learning-Based Collaborative Willingness Network for Automobile Maintenance Service
	1 Introduction
	2 Research Background
	2.1 Automobile After-Sales Collaborative Service
	2.2 Multi-agent Deep Reinforcement Learning

	3 System Model
	3.1 Local Maintenance
	3.2 Recommending to Other Maintenance Service Stations
	3.3 Joint Optimization Problem

	4 Dynamic Task Recommending Algorithm Based on MADRL
	4.1 Dec-POMDP Formulation
	4.2 Proposed CWN-MADRL Algorithm
	4.3 Algorithm Training

	5 Experimental Analysis
	5.1 Experimental Setup and Comparison Algorithm
	5.2 Comparison of Algorithm Performance

	6 Conclusion
	References

	Hybrid Isolation Model for Device Application Sandboxing Deployment in Zero Trust Architecture
	1 Introduction
	2 Related Work
	2.1 Sandbox Security
	2.2 Access Control Model

	3 Motivation and Threat Model
	3.1 Attack Surface
	3.2 Assumptions and Threat Models

	4 Hybrid Isolation Model Based on Access Behavior
	4.1 Security Objectives
	4.2 Definitions
	4.3 Security Characteristics
	4.4 Security Level Management
	4.5 Security State Transition Rules

	5 Security Analysis
	6 Experiment
	6.1 Prototype
	6.2 Security Evaluation
	6.3 Performance Evaluation

	7 Conclusion
	References

	AIHWS – Artificial Intelligence in Hardware Security
	On the Effect of Clock Frequency on Voltage and Electromagnetic Fault Injection
	1 Introduction
	2 Preliminaries
	3 Test Applications
	3.1 Register-Based Loop
	3.2 Memory-Based Loop
	3.3 Unrolled Loop

	4 Setup
	4.1 Target of Evaluation
	4.2 Hardware Tools
	4.3 Software Tools
	4.4 EMFI Setup
	4.5 VFI Setup
	4.6 Results Classification

	5 Experimental Results
	5.1 EMFI
	5.2 VFI

	6 Discussion
	7 Conclusion
	References

	S-box Pooling: Towards More Efficient Side-Channel Security Evaluations
	1 Introduction
	1.1 The Context of This Work
	1.2 Problem to Be Addressed
	1.3 Our Contribution
	1.4 Related Work
	1.5 Organization of the Paper

	2 Background
	2.1 Template Attack
	2.2 Stochastic Model Attack
	2.3 Deep Learning DPA Attack

	3 Methodology
	3.1 S-box Pooling Profiled Attack
	3.2 Knowledge of POIs Assumption
	3.3 Metrics and Selection of Parameters

	4 Experimental Results
	4.1 Common Settings
	4.2 Setting #1: An Unmasked Sequential AES S-boxes Implementation
	4.3 Setting #2: A Masked Sequential AES S-boxes Implementation
	4.4 Setting #3: A Masked Parallel AES S-boxes Implementation

	5 Conclusion
	References

	Deep Learning-Based Side-Channel Analysis Against AES Inner Rounds
	1 Introduction
	2 Preliminaries
	2.1 Correlation Power Analysis (CPA)
	2.2 Deep Learning Methodologies
	2.3 Attack Evaluation Methodology

	3 Related Work
	4 First-Order Non-profiled Attacks on AES Inner Rounds
	4.1 Notations
	4.2 On the Attack Feasibility After the S-box at Rounds 2, 3, and 4
	4.3 Attacking a Byte Before AddRoundKey at Round 7

	5 Experimental Results
	5.1 Setup
	5.2 The Deep Learning Model Architecture
	5.3 Attacking a Byte After Round 2S-box
	5.4 Attacking a Byte After Round 3S-box
	5.5 Attacking a Byte After Round 4S-box

	6 Conclusions and Future Work
	References

	A Side-Channel Based Disassembler for the ARM-Cortex M0
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 The Datasets
	5 Selecting the Mixed-Instruction Sequence
	6 Experimental Results
	6.1 Overview of Algorithms Used for Training and Classification
	6.2 Choosing the Configuration for the Dataset
	6.3 Amount of Traces per Program
	6.4 Training and Classification for Groups of Instructions
	6.5 Training and Classification Results for Individual Instructions
	6.6 Discussion

	7 Conclusions and Future Work
	A Discussion KL-Based Feature Selection
	A.1 Background
	A.2 Results of Feature Selection

	References

	Towards Isolated AI Accelerators with OP-TEE on SoC-FPGAs
	1 Introduction
	2 Security Analysis
	2.1 AI Accelerators
	2.2 Threat Model
	2.3 Related Works

	3 Proposed Method
	3.1 Overview
	3.2 NVDLA
	3.3 Arm TrustZone and OP-TEE
	3.4 XMPUs and XPPUs
	3.5 Threats and Countermeasures

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Discussion
	5.1 Parameter Encryption
	5.2 Combined Use of AI Accelerators
	5.3 Hardware Security

	6 Conclusion
	References

	Order vs. Chaos: Multi-trunk Classifier for Side-Channel Attack
	1 Introduction
	2 Standard Classifiers
	2.1 Architecture
	2.2 Evaluation
	2.3 Thought Experiment
	2.4 Ambiguous Labels and Low Accuracies (Acc)

	3 Introducing MTOvC classifiers
	3.1 Architecture
	3.2 Evaluation
	3.3 Advantages and Disadvantages over Standard Classifier

	4 Results
	4.1 Datasets
	4.2 Discussion

	5 Conclusion
	References

	AIoTS – Artificial Intelligence and Industrial IoT Security
	Framework for Calculating Residual Cybersecurity Risk of Threats to Road Vehicles in Alignment with ISO/SAE 21434
	1 Introduction
	2 Background
	2.1 Requirements Of Risk Management Framework
	2.2 ISO/SAE 21434
	2.3 Related Work

	3 Residual Risk Management Framework
	3.1 Residual Risk
	3.2 Head Lamp Example
	3.3 Calculating Residual Risk Using Flow Graphs
	3.4 Evaluation

	4 Discussion
	5 Conclusion And Future Works
	References

	Output Prediction Attacks on Block Ciphers Using Deep Learning
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison with Existing Studies

	2 Methodology
	2.1 Goals of Attack
	2.2 Neural Network and Hyperparameters
	2.3 Deep Learning Models and Their Evaluation

	3 Whitebox Analysis
	3.1 Application to Toy Block Ciphers
	3.2 Application to Block Ciphers with Large Block Sizes
	3.3 Accuracy of Experimental Results

	4 Extended Whitebox Analysis on Small PRESENT-[4]
	4.1 Experimental Procedure
	4.2 Experimental Results

	5 Conclusion
	A Our Target Ciphers
	B Related Works
	C Experimental Results Using the CNN
	D Maximum Differential Probabilities of small PRESENT-[4], small AES-[4], and small TWINE-[4]
	E More Detailed Results in Sect.3.1
	F More Detailed Results in Sect.3.2
	References

	HolA: Holistic and Autonomous Attestation for IoT Networks
	1 Introduction
	2 Background
	2.1 Remote Attestation
	2.2 Trusted Anchor
	2.3 Chord

	3 Assumptions
	3.1 System Model
	3.2 Threat Model

	4 Motivation
	4.1 CRA Limitations in Internet-Like Networks
	4.2 Security Properties

	5 HolA Overview
	5.1 HolA Device Architecture
	5.2 HolA Device Lifecycle

	6 HolA: Design
	6.1 Status List Propagation
	6.2 Neighborhood Attestation and Absence Detection
	6.3 Network Obfuscation

	7 HolA: Evaluation
	7.1 Experimental Setup
	7.2 HolA Resiliency
	7.3 HolA Security Properties
	7.4 Time Delay for Neighbourhood Attestation
	7.5 SL Propagation Performance
	7.6 Memory Consumption
	7.7 Communication Overhead

	8 Related Works
	9 Discussion
	10 Conclusion
	References

	CIMSS – Critical Infrastructure and Manufacturing System Security
	The Etiology of Cybersecurity
	1 Introduction
	2 Literature Review
	2.1 Terminology

	3 A Cybersecurity Hypothesis in the ABF-Framework
	3.1 Mereo-Topological Reasoning
	3.2 Qualitative Evaluation of Agent Space in A,B,F

	4 Prediction of Cybersecurity Weaknesses
	4.1 From Multi-agent to Cyber-Physical Systems
	4.2 Security and Insecurity of a System
	4.3 Cybersecurity Risk Assessment

	5 Conclusion and Future Work
	A Class Diagram for ABF-Framework
	B Overview of the Results of the Tool
	References

	Outsider Key Compromise Impersonation Attack on a Multi-factor Authenticated Key Exchange Protocol
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Organization of the Rest Article

	2 Related Work
	3 Preliminaries
	3.1 Metric Space
	3.2 Min-Entropy and Statistical Distance
	3.3 Public Key Encryption Scheme
	3.4 Message Authentication Code Scheme
	3.5 Fuzzy Extractor

	4 Security Model
	4.1 Execution Environment
	4.2 Adversarial Model
	4.3 Secure AKE Protocols
	4.4 Security Experiment EXPMFAKE,A ()

	5 Security Analysis and Improvement of Zhang's MFAKE Protocol
	5.1 Zhang's MFAKE Protocol
	5.2 The Insecurity of Zhang's MFAKE Scheme
	5.3 An Improvement Solution of Zhang's MFAKE Scheme

	6 Conclusion
	References

	Toward Safe Integration of Legacy SCADA Systems in the Smart Grid
	1 Introduction
	2 False Command Attacks Against Legacy SCADA Systems
	3 Data Diode Approach
	4 Detect-and-Respond Approach
	4.1 Protection Agent
	4.2 Detect-and-Respond Defence of Protection Agent
	4.3 Example Implementation with Siemens Sinaut 8FW Protocol
	4.4 Security Analysis
	4.5 Cost and Benefit Analysis

	5 Conclusions
	References

	Cloud S&P – Cloud Security and Privacy
	RATLS: Integrating Transport Layer Security with Remote Attestation
	1 Introduction
	2 Background
	2.1 Transport Layer Security
	2.2 Trusted Computing

	3 Design
	3.1 Design Goals
	3.2 High-Level Design

	4 Implementation
	4.1 Architecture
	4.2 RATLS Handshake with Remote Attestation
	4.3 RATLS Handshake with Session Resumption
	4.4 Attestation Provider Plugins

	5 Evaluation
	5.1 Usability
	5.2 Security
	5.3 Performance

	6 Related Work
	7 Conclusions
	References

	DLPFS: The Data Leakage Prevention FileSystem
	1 Introduction
	2 Data Leakage Prevention FileSystem in Practice
	3 Implementation Details
	4 Experimental Evaluation
	4.1 Setup
	4.2 Methodology
	4.3 Results and Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

	Privacy-Preserving Record Linkage Using Local Sensitive Hash and Private Set Intersection
	1 Introduction
	2 Preliminaries and Notation
	2.1 Entity Resolution (ER)
	2.2 Local Sensitive Hash (LSH)
	2.3 Private Set Intersection (PSI)

	3 Our Solution
	3.1 PPRL Variants

	4 Our Implementation
	4.1 Relative Weighting of the Record Fields
	4.2 LSH Description

	5 Experiments
	6 Conclusion
	A Related Work
	B Security Assumptions
	C Privacy-Preserving Record Linkage
	D Example of the LSH-PSI Protocol
	E Using the Jaccard Indicator
	E.1 Optimizing the Protocol
	E.2 Scoring the Reported Matches

	References

	SCI – Secure Cryptographic Implementation
	UniqueChain: Achieving (Near) Optimal Transaction Settlement Time via Single Leader Election
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 The Model of Protocol Execution

	3 The Single Leader Election
	3.1 Two-Chain Blockchain
	3.2 The Resource Procedure

	4 Protocol uc: UniqueChain in the PoS Setting
	5 Security Analysis of uc
	6 Conclusion
	A The Implementation of Finit
	B The Implementation of Fres
	References

	PEPEC: Precomputed ECC Points Embedded in Certificates and Verified by CT Log Servers
	1 Introduction
	2 Preliminaries
	2.1 PKI and CT
	2.2 Elliptic Curve Cryptography
	2.3 w-NAF

	3 PEPEC Design
	3.1 Generating PEPEC Certificates
	3.2 Verifying PEPEC Certificates
	3.3 Utilizing PEPEC Certificates

	4 Evaluation
	4.1 Security Evaluation
	4.2 Performance Evaluation

	5 Conclusion
	References

	Efficient Software Implementation of GMT6-672 and GMT8-542 Pairing-Friendly Curves for a 128-Bit Security Level
	1 Introduction
	2 Preliminaries
	2.1 Guillevic-Masson-Thomé (GMT) Curves with Embedding Degrees 6 and 8
	2.2 Ate Pairing over the GMT6 and GMT8 Curves
	2.3 Ate Pairings over GMT Curves with Twists

	3 Review of Extension Field Classes
	3.1 Optimal Extension Fields
	3.2 All-One Polynomial Extension Fields

	4 Proposal of Efficient GMT6 and GMT8 Curve Parameters and Their Field-Towering Schemes
	4.1 GMT6 Curve Parameters and Towers
	4.2 GMT8 Curve Parameters and Towers

	5 Implementation of Ate Pairing over the GMT6 and GMT8 Curves
	5.1 Implementation of Miller's Algorithm
	5.2 Implementation of Final Exponentiation

	6 Implementation Results
	6.1 Multi-precision Libraries and Implementation Features
	6.2 Pairing Benchmark Results

	7 Conclusion and Future Work
	References

	SecMT – Security in Mobile Technologies
	Leaky Blinders: Information Leakage in Mobile VPNs
	1 Introduction
	2 Technical Background
	2.1 Mobile Devices
	2.2 Networks

	3 Experimental Setup
	3.1 Network Setup
	3.2 Devices and App Setup
	3.3 Parameter Setup

	4 Dynamic Analysis
	4.1 Metrics
	4.2 Experiments
	4.3 Case Study: Lockdown Option
	4.4 Case Study: DNS Traffic

	5 Directions for Future Work
	5.1 Android Internals
	5.2 VPN App Internals
	5.3 User Expectations

	6 Related Work
	7 Conclusion
	References

	Instrumentation Blueprints: Towards Combining Several Android Instrumentation Tools
	1 Introduction
	2 Instrumentation Tools in the Literature
	2.1 Taxonomy of Instrumentation Tools
	2.2 Limitations of Instrumentation

	3 Background
	4 Instrumentation Blueprints
	4.1 Blueprint Design
	4.2 The Syntax

	5 Implementation
	5.1 Generation of Instrumentation Blueprints for ACVTool
	5.2 Blueprint Applicator
	5.3 Evaluation
	5.4 Limitations

	6 Conclusions and Future Work
	References

	SiMLA – Security in Machine Learning and its Applications
	A Siamese Neural Network for Scalable Behavioral Biometrics Authentication
	1 Introduction
	2 Background
	2.1 Attacker and System Model

	3 Approach
	3.1 Feature Engineering
	3.2 Siamese Neural Network

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	A Methodology for Training Homomorphic Encryption Friendly Neural Networks
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Methodology
	3.1 Trainable Polynomial Activation
	3.2 Smooth-Transition
	3.3 Knowledge Distillation

	4 Experiments
	4.1 Datasets
	4.2 Model
	4.3 Experimental Results

	5 Conclusions
	A AlexNet Network Architecture
	B Model Hyperparameters
	References

	Scalable and Secure HTML5 Canvas-Based User Authentication
	1 Introduction
	2 Background
	2.1 Browser Fingerprinting
	2.2 HTML5 Canvas

	3 Approach
	3.1 System and Attacker Model
	3.2 Authentication Protocol Design
	3.3 Machine Learning Classifier Design
	3.4 Training Procedure
	3.5 Evaluation Strategy

	4 Evaluation
	4.1 Datasets
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Conclusions
	References

	Android Malware Detection Using BERT
	1 Introduction
	2 Background
	2.1 Malware Detection
	2.2 Android Package
	2.3 Transformer
	2.4 BERT

	3 Experimental Setup
	3.1 Dataset
	3.2 Pre-trained Model
	3.3 Fine-Tuning

	4 Empirical Results
	4.1 RQ1: Are the Experiments from MalBERT Reproducible?
	4.2 RQ2: How Important are Permissions for Malware Detection?
	4.3 RQ3: Is it Possible to Keep or Improve the Results by Reducing the Size of the Manifests?
	4.4 RQ4: Can BERT Classify Families of Malware?

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	POSTERS
	POSTER: A Transparent Remote Quantum Random Number Generator over a Quantum-Safe Link
	1 Motivation
	2 The Overall Architecture
	3 The QRNG Web Service
	4 The Receiver
	5 The Wiretap
	6 Conclusion
	References

	POSTER: Enabling User-Accountable Mechanisms in Decision Systems
	1 Motivation
	2 Approach
	2.1 User-Accountable Anonymous Identifiers

	3 Challenges and Potential
	4 Conclusion and Open Questions
	References

	Poster: Key Generation Scheme Based on Physical Layer
	1 Introduction
	1.1 Wireless Network Security
	1.2 Key Generation Method Based on Physical Layer

	2 Our Work
	2.1 Optimization of Quantization Algorithms
	2.2 Preprocessing of Measurements in Different Scenarios

	3 Future Research
	References

	POSTER: ODABE: Outsourced Decentralized CP-ABE in Internet of Things
	1 Introduction
	2 Literature Review
	3 Outsourced Encryption
	4 Analysis
	5 Conclusion
	References

	POSTER: Ransomware Detection Mechanism – Current State of the Project
	1 Introduction
	2 Current State
	2.1 Indicators

	3 Upcoming Challenges
	References

	Author Index

